• Title/Summary/Keyword: Clostridium acetobutylicum B18

Search Result 3, Processing Time 0.02 seconds

Clostridium acetobutylicum B18를 이용한 부탄올 발효에서 pH 및 extra nutrient가 부탄올 생성에 미치는 영향연구

  • Yun, Ji-Yong;Kim, Tae-Yong;Park, Chan-El;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.243-246
    • /
    • 2000
  • Clostridium acetobutylicum Bl8 can produce a large amount of butanol by control characteristics such as glucose concentration, pH and extra nutrient. It is known that this stain is potentially useful in simultaneous ABE fermentation-seperation system because of its low acid $production^{1).}$ The purpose of this study is to determine optimal condition of fermentation to produce maximum butanol in batch and fed-batch by strain Bl8.

  • PDF

Extractive Butanol Fermentation Using Pervaporation and a Low Acid Producing Strain (투과증발과 유기산 저생성 균주를 이용한 부탄올 추출발효)

  • 윤지용
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.380-387
    • /
    • 2000
  • An extractive fermentation process using pervaporation was studied in a 7 liter fermentor. Pervaporation was performed using a silicone membrane module and a low-acid-producing strain Clostridium acetobutylicu, B18 was used to produce butanol. In batch culture without pervaporation pH 5.5 and initial glucose concentration of 60 g/L resulted in the highest butanol productivity (0.216 g/L$.$h) with butanol yield of 0.261 Butanol flux through the membrane was best at 2.0 L/min-tubing of air flow rate In batch and fed-batch fermentation glucose consumption rate increased by 1.3 times with pervaporation.

  • PDF

Modeling and Analysis of Extractive Butanol Fermentation with Pervaporation (투과증발을 이용한 부탄올 추출발효 시스템의 모델링과 분석)

  • 김성훈;박창호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.529-536
    • /
    • 2000
  • Results from experiments and mathematical modeling were compared for pervaporative butanol fermentation. The developed model includes expressions to predict characteristics of butanol fermentation, such as, microbial growth, solvent (butanol, acetone, and ethanol) formation and organic acid (acetate and butyrate) production. Butanol diffusivity was 1.15${\times}$10(sup)-7 ㎡/hr at 1.5 L/min-tubing of air flow rate using a pervaporative module. The model correlated well with experimental results (cell growth, glucose consumption and concentrations of solvents and organic acids) for batch fermentation with and without pervaporation. Larger surface area and thinner module tubing resulted in an increased glucose consumption and a decreased residual butanol concentration. Optimum membrane area and thickness were 0.34 ㎡ and 120 $\mu\textrm{m}$, respectively.

  • PDF