• 제목/요약/키워드: Closed-loop

검색결과 2,023건 처리시간 0.023초

통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측 (Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation)

  • 한석기;주지용;이준호;박상영;김영수;정용석;정도환;허준;이기훈
    • 한국광학회지
    • /
    • 제33권4호
    • /
    • pp.167-176
    • /
    • 2022
  • 적응 광학(adaptive optics, AO)은 대기 외란을 실시간으로 보정하는 기술을 말하고, 이러한 적응광학의 효율적 개발을 위하여, 다양한 성능 예측 기법을 도입하여 적응광학이 적용된 시스템 성능 예측을 실시한다. 적응광학의 성능 예측 기법으로 자주 사용되는 기법으로는 통계분석, 전산모사 및 광학 벤치 테스트가 있다. 통계분석에서는 적응광학 시스템을 통계 분석 모델로 가정하여 오차값(분산)의 제곱을 전부 합쳐 스트렐비를 간단하게 추정한다. 다만, 하위 변수 간의 상관 관계는 무시되어 이에 따른 추정의 오류는 존재한다. 다음으로, 전산모사는 대기 난류, 파면센서, 변형거울, 폐쇄 루프 등 모든 구성요소를 가능한 한 실제와 가깝게 모델링하고, 시간 흐름에 따른 적응광학 시스템의 변화를 모두 구현하여 성능 예측을 수행한다. 다만, 전산모사 모델과 현실 사이에는 여전히 일부 차이가 있어, 광학 벤치 테스트를 통하여 시스템 성능을 확인한다. 최근 국내에서 개발된 변형 거울을 적용한 1.6 m 지상 망원경용 적응광학 시스템을 개발 중에 있어, 이에 적용 가능한 적응광학 시스템을 통하여 성능 예측 기법이 요구되며 동시에 성능 예측 기법의 비교를 진행하고자 한다. 앞서 언급된 통계분석 및 전산모사를 이용하여 시스템 성능 예측을 수행하였으며, 성능 예측의 분석을 위해 각각의 성능 예측 기법의 망원경 및 적응광학 시스템 모델링 과정 및 결과를 제시하였다. 이때 성능 예측을 위한 대기 조건으로는 보현산 관측 중앙값(median)을 적용하였다. 그 결과 통계 분석 방법의 경우 평균 스트렐 비가 0.31이 도출됨을 확인하였고, 전산모사 방법의 경우 평균 스트렐 비가 0.32를 가짐을 확인함으로써 두 방법에 의한 예측이 거의 유사함을 확인할 수 있었다. 추가적으로, 전산모사의 경우 해석 결과의 신뢰성을 확보하기 위하여, 모사 시간이 대기 임계 시간 상수의 약 240배인 0.9초 이상 수행되어야 함을 알 수 있었다.

지중 열교환기용 멘토나이트 뒤채움재의 화학적, 물리적 영향 요소에 관한 연구 (Chemical and Physical Influence Factors on Performance of Bentonite Grouts for Backfilling Ground Heat Exchanger)

  • 이철호;위지혜;박문서;최항석;손병후
    • 한국지반공학회논문집
    • /
    • 제26권12호
    • /
    • pp.19-30
    • /
    • 2010
  • 벤토나이트는 팽윤성이 좋고 투수계수가 낮아 수직 밀폐형 지중 열교환기 시공 시 보어홀(borehole)의 뒤채움재로 널리 사용되고 있다. 본 연구에서는 국내에서 사용되는 3가지 벤토나이트를 선정하여 배합비에 따른 점도와 열전도도를 평가하였다. 시공 조건에 따라 다양한 벤토나이트 뒤채움재의 함수비를 고려하여 점도와 열전도도 특성을 규명하기 위해 벤토나이트를 배합비(벤토나이트 무게/(벤토나이트+물) 무게) 5%, 10%, 15%, 20%, 25%로 배합하고 시간에 따른 점도와 열전도도를 측정하였다. 그리고 벤토나이트 뒤채움재가 해안지역에서 시공될 경우 지하수의 염도에 의한 영향을 검토하기 위해 배합수의 NaCl 농도가 0.1M, 0.25M, 0.5M일 때 벤토나이트 뒤채움재의 침강 특성을 관찰하였다. 벤토나이트 뒤채움재의 낮은 점도로 인해 천연규사와 같은 첨가재가 지중 열교환기 바닥에 침전될 경우 발생할 수 있는 재료분리 현상을 저점도 벤토나이트 뒤채움재를 사용하여 실험을 통해 규명하였으며 그 결과 다음과 같은 결론을 얻을 수 있었다. (1) 벤토나이트 뒤채움재의 점도는 시간이 지남에 따라 또는 배합비가 증가함에 따라 상승하는 경향을 나타내며 벤토나이트 뒤채움재의 열전도도는 배합비가 증가하면 상승하지만 통일한 배합비에서는 시간에 따른 변화가 미미하다. (2) 벤토나이트 뒤채움재의 팽창지수가 높을수록 배합수의 NaCl 농도에 따른 침강율은 상대적으로 낮게 나타난다. (3) 저점도 벤토나이트 뒤채움재는 첨가재의 재료분리로 인해 보어홀 내의 깊이별 첨가재 분포를 비균질하게 하므로 보어홀 상부의 열전도도가 하부에 비해 작게 나타날 수 있는 가능성이 있다.

집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법 (Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.55-79
    • /
    • 2013
  • 본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.