• 제목/요약/키워드: Closed-loop

검색결과 2,023건 처리시간 0.159초

Quantum Hall Effect of CVD Graphene

  • Kim, Young-Soo;Park, Su-Beom;Bae, Su-Kang;Choi, Kyoung-Jun;Park, Myung-Jin;Son, Su-Yeon;Lee, Bo-Ra;Kim, Dong-Sung;Hong, Byung-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.454-454
    • /
    • 2011
  • Graphene shows unusual electronic properties, such as carrier mobility as high as 10,000 $cm^2$/Vs at room temperature and quantum electronic transport, due to its electronic structure. Carrier mobility of graphene is ten times higher than that of Silicon device. On the one hand, quantum mechanical studies have continued on graphene. One of them is quantum Hall effect which is observed in graphene when high magnetic field is applied under low temperature. This is why two dimension electron gases can be formed on Graphene surface. Moreover, quantum Hall effect can be observed in room temperature under high magnetic field and shows fractional quantization values. Quantum Hall effect is important because quantized Hall resistances always have fundamental value of h/$e^2$ ~ 25,812 Ohm and it can confirm the quantum mechanical behaviors. The value of the quantized Hall resistance is extremely stable and reproducible. Therefore, it can be used for SI unit. We study to measure quantum Hall effect in CVD graphene. Graphene devices are made by using conventional E-beam lithography and RIE. We measure quantum Hall effect under high magnetic field at low temperature by using He4 gas closed loop cryostat.

  • PDF

천연가스 개조 승용차에 대한 실험적 연구(2) - 분사 시스템 평가 (Experimental Study on Natural Gas Conversion Vehicle(2) - Evaluation of Injection System)

  • 김형구;권순태;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.444-453
    • /
    • 2015
  • In the previous study, several problems were observed in a NG conversion vehicle, which were fail of air-fuel ratio closed loop control, aggravated fuel economy, increased harmful emission and declined roadability. It was provisionally supposed that the mismatch of injection system with the engine caused these performance deterioration. In this context, the characteristics of fuel injection system of commercial conversion kit for NG were investigated experimentally varying the engine speed, fuel rail pressure and volume. The results are as follows; The injection quantity decreases as the engine speed increases due to the extremely small rail volume of the presenting system and flow rate of No. 2 injector are always lower than that of the other ones regardless of the speed under the dynamic operation condition. Furthermore the existing system does not meet the required fuel quantity for the normal engine operation over 3000 RPM. On the other hands, the large rail volume systems ease and/or eliminate the difference of injection quantity between the injectors according to the speed variation, however, these systems decrease injection flow rate and still cannot supply sufficient fuel. Finally, suitable combination of the higher rail pressure and the larger rail volume might be a solution about these problems.

논문 : 외란 관측기를 이용한 대기권 재진입 궤적 추종성능 향상 (Papers : Improvement of Tracking Performance for Re - Entry Trajectory via the Disturbance Observer)

  • 이대우;조겸래
    • 한국항공우주학회지
    • /
    • 제30권1호
    • /
    • pp.75-81
    • /
    • 2002
  • 재진입 제어계에서는 항력가속도의 시간미분을 해석적으로 추정하므로 오차가 발생되기 쉽다. 더구나, 극초음속 영역에서의 정확한 항력계수 추정의 어려움과 스케일 고도의 비현실성도 정상상태오차의 원인이 된다. 우주왕복선의 경우, 제어계에 항력가속도 오차의 적분항을 첨가함으로서 정상상태 오차를 줄이는 방법을 취하였지만 페루프 시스템에 다극점을 갖게 하여 현대적인 제어기 합성에 어려움을 가져다 준다. 그러므로, 본 논문에서는 해석적 계산에 의해서 항력가속도 시간미분에 포함된 오차를 추정하고, 그 추정오차를 이용해 항력가속도 시간미분을 보정함으로써 정상상태 오차를 줄이는 방법인 외란 관측기의 설계를 제안하고자 한다. 결과로는 32개의 기준궤적을 대상으로 대기권 재진입 시스템의 성능을 검증해 본다.

IP 기반 통신망의 멀티캐스팅 서비스를 위한 지수이동 가중평판을 이용한 전송률기반 폭주제어에 관한 연구 (A Study on Rate-Based Congestion Control Using EWMA for Multicast Services in IP Based Networks)

  • 최재하;이승협;추형석;안종구;신성욱
    • 융합신호처리학회논문지
    • /
    • 제8권1호
    • /
    • pp.39-43
    • /
    • 2007
  • 고속통신망에서 데이터 전송률의 결정은 폭주제어 기법을 갖는 되먹임 구조 통신망시스템의 안정성에 매우 중요한 요소이다. 비동기전송망에서, ABR 서비스는 하위 노드의 트래픽 정보를 전달할 수 있는 RM(resource management) 셀 기반의 되먹임 구조를 갖는다. 그러나 일반적인 IP 기반 통신망에서는 하위 노드 트래픽의 현재상태가 각 전송원으로 바로 전달되어 질 수 없다. 본 논문에서는 고속통신망에서의 폭주 제어를 위해 지수이동가중 평균(exponential weighted moving average: EWMA)을 이용한 전송률 기반의 효과적인 되먹임 통신망 제어 기법을 제안한다. 제안된 통신망 폭주 제어기법은 스위치 대기열의 안정성을 보장하고 보다 높은 통신망 활용 효율을 보인다. 또한, 제안된 폭주제어 기법은 통신망에서의 전송원의 수의 증가에 대하여 보다 유연성을 갖으며, 이를 통하여 망 확장성을 증가시킬 수 있다.

  • PDF

소아 장루의 합병증 (Stomal Complications in Children)

  • 박중재;이주홍;정종도;최영철;정우식;전시열
    • Advances in pediatric surgery
    • /
    • 제8권1호
    • /
    • pp.11-15
    • /
    • 2002
  • This is a 20 year analysis of the problems associated with enterostomy formation, and closure. Forty-three stomas were established in 43 patients: 23 for anorectal malformations, 11 for Hirschsprung's diseases, 4 for necrotizing enterocolitis, 3 for multiple ileal atresias, 1 for volvulus neonatorum with perforation, and 1 for diaphragmatic hernia with colon perforation. Thirty boys and 13 girls were included (mean age 4.8 months). Stoma complications were encountered in 13 patients (30.2 %): stomal prolapse, stenosis, obstruction, paracolic hernia, retraction, dysfunction, and skin excoriation, Four patients (9.3 %) required stomal revision. Occurrence of complications was not related to age and primary disease, but sigmoid colostomy showed lower complication rate than transverse colostomy (20.0 % vs 42.9 %, p<0.05). There were five deaths but, only one (2.3 %) was directly related to the enterostomy complication. Twenty-one stomas were closed in our hospital and complications occurred in seven patients (33.3 %). The most common complication was wound sepsis in 5 children. In conclusion, because the significant morbidity of stomal formation still exists, refinements of the surgical technique seem to be required, Sigmoid loop colostomy is preferred whenever possible.

  • PDF

Improvement of High-Availability Seamless Redundancy (HSR) Traffic Performance for Smart Grid Communications

  • Nsaif, Saad Allawi;Rhee, Jong Myung
    • Journal of Communications and Networks
    • /
    • 제14권6호
    • /
    • pp.653-661
    • /
    • 2012
  • High-availability seamless redundancy (HSR) is a redundancy protocol for Ethernet networks that provides two frame copies for each frame sent. Each copy will pass through separate physical paths, pursuing zero fault recovery time. This means that even in the case of a node or a link failure, there is no stoppage of network operations whatsoever. HSR is a potential candidate for the communications of a smart grid, but its main drawback is the unnecessary traffic created due to the duplicated copies of each sent frame, which are generated and circulated inside the network. This downside will degrade network performance and might cause network congestion or even stoppage. In this paper, we present two approaches to solve the above-mentioned problem. The first approach is called quick removing (QR), and is suited to ring or connected ring topologies. The idea is to remove the duplicated frame copies from the network when all the nodes have received one copy of the sent frame and begin to receive the second copy. Therefore, the forwarding of those frame copies until they reach the source node, as occurs in standard HSR, is not needed in QR. Our example shows a traffic reduction of 37.5%compared to the standard HSR protocol. The second approach is called the virtual ring (VRing), which divides any closed-loop HSR network into several VRings. Each VRing will circulate the traffic of a corresponding group of nodes within it. Therefore, the traffic in that group will not affect any of the other network links or nodes, which results in an enhancement of traffic performance. For our sample network, the VRing approach shows a network traffic reduction in the range of 67.7 to 48.4%in a healthy network case and 89.7 to 44.8%in a faulty network case, compared to standard HSR.

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • 제11권5호
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Assessment of Leak Detection Capability of CANDU 6 Annulus Gas System Using Moisture Injection Tests

  • Nho, Ki-Man;Kim, Wang-Bae;Sim, Woo-Gun
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.403-415
    • /
    • 1998
  • The CANDU 6 reactor assembly consists of an array of 380 pressure tubes, which are installed horizontally in a large cylindrical vessel, the Calandria, containing the low pressure heavy water moderator. The pressure tube is located inside the calandria tube and the annulus between these tubes, which forms a closed loop with $CO_2$ gas recirculating, is called the Annulus Gas System(AGS). It is designed to give an alarm to the operator even for a small pressure tube leak by a very sensitive dew point meter so that he can take a preventive action for the pressure tube rupture incident. To judge whether the operator action time is enough or not in the design of Wolsong 2,3 & 4, the Leak Before Break(LBB) assessment is required for the analysis of the pressure tube failure accident. In order to provide the required data for the LBB assessment of Wolsong Units 2, 3, 4, a series of leak detection capability tests was performed by injecting controlled rates of heavy water vapour. The data of increased dew point and rates of rise were measured to determine the alarm set point for the dew point rate of rise of Wolsong Unit 2. It was found that the response of the dew point depends on the moisture injection rate, $CO_2$ gas flow rate and the leak location. The test showed that CANDU 6 AGS can detect the very small leaks less than few g/hr and dew point rate of rise alarm can be the most reliable alarm signal to warn the operator. Considering the present results, the first response time of dew point to the AGS $CO_2$ flow rate is approximated.

  • PDF

동태적 복잡성을 고려한 최적의 연구개발 투자 전략 (Optimal Investment Strategy for Research and Development Considering Dynamic Complexity)

  • 손지윤;김현정;김수욱
    • 한국경영과학회지
    • /
    • 제40권4호
    • /
    • pp.19-33
    • /
    • 2015
  • Recently, interest in research and development (R&D) investment decisions have increased among Korean domestic enterprises. However, existing R&D investment studies only focused on government R&D investment policies while only a few studies investigated firm level R&D investment. Prior literatures also overlooked the feedback loop between R&D investment and firm performance. Therefore, this paper identifies a system dynamics model for R&D investment decision making in domestic electronics firms. The conceptual model is derived from R&D investment-related theories found in bodies of literature on company performance, enterprise activity, and market maturity. This study investigates the dynamic feedback between R&D activities and sales using the system dynamics model. In other words, the system dynamics model is used to explain the change in the closed feedback circulation structure in R&D investment activities including technology development, production process, and marketing that subsequently result in sales increase and re-investment into R&D from the generated revenues. There are two major results. First, a similar ratio of investment on technology development and production process derives the higher company sales. Second, regardless of market maturity, marketing investment ratio positively affects sales and R&D budget growth. This study provides a system dynamics model to find the optimal ratio for R&D investment and suggests managerial strategic implications on electronic firm R&D investment decision making under market maturity condition.

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF