• Title/Summary/Keyword: Closed loop control system

Search Result 1,091, Processing Time 0.048 seconds

A study on the implementation of closed-loop system using the stepper motor back-EMF (스텝모터 역기전력을 이용한 폐루프 시스템 구현에 관한 연구)

  • Im, Sungbeen;Jeong, Sanghwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.363-370
    • /
    • 2015
  • In this paper, the control technique of the stepping motor using back electromotive force(B-EMF) without encoder is investigated. The stepping motor generally uses the rotary encoder to detect the rotor position. Since this method increases the cost and the motor configuration size, the new closed-loop control method applied for the B-EMF was implemented by using current detect circuit, AD-converter, and micro controller unit(MCU). The control loop of stepping motor became very simplified. The current change of stepping motor measured by the amplifier was measured and analyzed, when the missing step is occurred. Based on the data from current feedback, position errors were compensated and confirmed by using AD-converter.

Direct Digital Control of Single-Phase AC/DC PWM Converter System

  • Kim, Young-Chol;Jin, Lihua;Lee, Jin-Mok;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.518-527
    • /
    • 2010
  • This paper presents a new technique for directly designing a linear digital controller for a single-phase pulse width modulation (PWM) converter systems, based on closed-loop identification. The design procedure consists of three steps. First, obtain a digital current controller for the inner loop system by using the error space approach, so that the power factor of the supply is close to one. The outer loop is composed of a voltage controller, a current control loop including a current controller, a PWM converter, and a capacitor. Then, all the components, except the voltage controller, are identified by a discrete-time equivalent linear model, using the closed-loop output error (CLOE) method. Based on this equivalent model, a proper digital voltage controller is then directly designed. It is shown through PSim simulations and experimental results that the proposed method is useful for the practical design of PWM converter controllers.

Simple and Flexible Temperature Control System for Space Environment Test

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Moon, Guee-Won;Choi, Seok-Weon
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.29.1-29.1
    • /
    • 2008
  • The temperature control system which is using liquid and gaseous nitrogen has been known as the most economical system to simulate space temperature condition due to relatively not expansive price of the liquid nitrogen (less than 0.2 USD per liter). And, among these systems, the closed loop system which circulates compressed nitrogen gas come from sprayed liquid nitrogen by blower and makes a target temperature with heat from an electrical heater and flow rate of liquid nitrogen is prevail all over the world. But, this complete closed loop system requires expansive equipments such as blower, heater, and liquid nitrogen injector, and special maintenance on the system. Therefore, KARI is developing efficient and simple open loop system which utilizes liquid and gaseous nitrogen with eliminating a special blower and other expansive units. In this study, this open loop system with more efficiency and flexibility will be designed and introduced.

  • PDF

Flexible Eigenstructure Assignment: an Optimization Approach (유연 고유구조 지정기법: 최적화 접근법)

  • 김신종;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.10-10
    • /
    • 2000
  • Eigenstructure assignment is a typical method with the capability of the consideration of the specifications in time-domain in designing a 1]near control system. In general eigenstructure assignment such that all the desired eigenvalues are exactly assigned to the closed-loop system, the assignment of the eigenvectors is very restrictive. However if the arbitrary point in a certain area as an eigenvalue is allowed to be assigned t the closed-loop system, the assignment of the eigenvector corresponding to this eigenvalue can be much less restrictive. In this paper, the flexible eigenstructure assignment that can assign more closely the desired eigenvector to the closed-loop system by using an optimization technique is proposed.

  • PDF

Robustness of Independent Modal Space Control for Parameter and Modal Filter Errors (파라메터오차 및 모달필터오차에 대한 독립모달공간 제어기법의 강인성 해석)

  • Hwang, Jai-Hyuk;Kim, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3549-3559
    • /
    • 1996
  • In this study, the effect of parameter and modal filter errors on the vibration control characteristics of flexible structures is analyzed for IMSC ( Independent Modal Space Control). If the control force is designed on the basis of the mathematical model with the parameter and modal filter errors, the closed-loop performance of the vibration control system will be degraded depending on the magnitude of the errors. An asymptotic stability condition of the system with parameter and modal filter errors has more significant effect on the stability condition of the system with parameter and modal filter errors has been drived using Lyapunov approach. It has been found that modal filter error has more significant effect on the stability of closed-loop system than parameter error does. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator thchniques.

Identification of Closed Loop System by Subspace Method (부분공간법에 의한 페루프 시스템의 동정)

  • Lee, Dong-Cheol;Bae, Jong-Il;Hong, Soon-Il;Kim, Jong-Kyung;Jo, Bong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2143-2145
    • /
    • 2003
  • In the linear system identification using the discrete time constant coefficients, there is a subspace method based on 4SID recently much suggested instead of the parametric method like as the maximum likelihood method. The subspace method is not related with the impulse response and difference equation in its input-output equation, but with the system matrix of the direct state space model from the input-output data. The subspace method is a very useful tool to adopt in the multivariable system identification, but it has a shortage unable to adopt in the closed-loop system identification. In this paper, we are suggested the methods to get rid of the shortage of the subspace method in the closed-loop system identification. The subspace method is used in the estimate of the output prediction values from the estimating of the state space vector. And we have compared the results with the outputs of the recursive least square method in the numerical simulation.

  • PDF

Control of the Buck Converter using the Function Control Law (함수제어 기법을 이용한 Buck 컨버터 제어)

  • 이성백;원영진;김태웅
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.81-89
    • /
    • 1997
  • In order to achieve the zero voltage regulation of the output voltage, the function control law will be used. In the previous function control law, only the proportional controller is used and the stability of the closed loop system was not analyzed. In this paper, for the realization of the control law, a new method to retrieve the low frequency component of the inductor voltage is proposed and analyzed. The large signal closed loop characteristics are alos analyzed to ensure the stable operation of the system disturbances. By using the function control law in the control system, the effect of the disturbance of the supply voltage is reduced in 93.3% for the direct dusty ration method. Also, in the effect of the disturbance of the load current, the output voltage has a logn recovery-time and is changed proportionally in the direct duty ratio method, but has stable in the function control law. Finally, the analysis shows that the disturbance of the output voltage being due to the supply voltage variation can be eliminated completely and the closed loop output voltage is insensitive to the disturbance of the load current. Therefore, it is proved that by using the function control law, the switching power supply with zero-voltage regulation output voltage can be realized.

  • PDF

Feedback Control for Expanding Range and Improving Linearity of Microaccelerometers

  • Park, Yong-Hwa;Shim, Joon-Sub;Park, Sang-Jun;Kwak, Dong-Hun;Ko, Hyoung-Ho;Song, Tae-Yong;Huh, Kun-Soo;Park, Jahang-Hyon;Cho, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1706-1710
    • /
    • 2004
  • This paper presents a feedback-controlled, MEMS-fabricated microaccelerometer (${\mu}$XL). The ${\mu}$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis ${\mu}$XL fabricated by sacrificial bulk micromachining (SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100 Hz. The input range, non-linearity and bias stability are improved from ${\pm}$10 g to ${\pm}$18 g, from 11.1 %FSO to 0.86 %FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively

  • PDF

Torque ripple reduction of a closed-loop driven permanent magnet stepping motor by lead angle control (Lead angle 제어에 의한 폐루프 운전 영구자석형 스테핑 전동기의 토오크 리플 저감)

  • Lee, Hyun-Chang;Jun, Ho-Ik;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.280-288
    • /
    • 1997
  • In this paper, we will show that the torque ripple in closed-loop drives of permanent magnet stepping motors is reduced as properly selected lead angle control method. We propose an instantaneous torque equation, which is the function of lead angle, to estimate the influence on torque ripple. We design a closed-loop lead angle control system based on the proposed instantaneous torque equation and measure the instantaneous torque in various excitation modes. It is shown that torque ripple is greatly reduced, as seen from the experimental results as well as from the computer simulation results. For example, torque ripple reduced from 78.25% to 46.82% in the case of 50 PPS single-phase excitation mode operation.

  • PDF

A Modified Microstep Drive of PM Step Motor (PM 스텝 모터의 개선된 마이크로 스텝 구동)

  • Lee, Tae-Gyoo;Shin, Ki-Sang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.15-17
    • /
    • 1996
  • In this paper, a modified microstep drive of PM step motor is presented. The open-loop drive of a step motor is attractive and widely accepted in applications of speed and position controls. However, the performance of the step motor is limited under the open-loop drive. The closed-loop control is advantages over the open-loop control not only in that step failure never occurs but that the motion is much quicker and smoother. However, a high resolution sensor is needed for detecting position and speed. The modified microstep drive is constructed as a microstep drive with speed feedback. The advantages of the proposed method is that the controller can be designed by a low resolution sensor and is simpler than other closed-loop controller. A concept of vector control is used for verifying the proposed scheme. Simulations show the performance of the proposed method and a comparison with a classic drive method.

  • PDF