• Title/Summary/Keyword: Closed estuary

Search Result 22, Processing Time 0.016 seconds

A STUDY ON THE FOOD OF THE GOBY, SYNECHOGOBIUS HASTA (풀망둑 Synechogobius hasta (TEMMINCK et SCHLEGEL)의 먹이 조사)

  • PAIK Eui-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1969
  • A goby, Synechogobius hasta (Temminck et Schlegel) was studied to investigate the food consumed and the biological change of the food organisms, and the fish were sampled from the closed tributary and the lower Part of the Naktong River, near Pusan, during the period from November of 1967 to December of 1968. The fish were sampled from four stations (Fig. 1), the total number of fish being 1,295 and they were grouped and analysed monthly. The content of the alimentary canal was analysed in three categories according to modified Nilsson's method (Dahl 1962) with a slight alteration: 1) The number of each item of stomach contents was counted and the percentage of each item in proportion to the total number of food organisms is indicated by the letter 'N' representing numerical percentage in Table 2. 2) The percentage of fish which contained any items of food organisms in proportion to the total number of fish caught in a given season is indicated by the letter 'O' representing frequency of occurrence. 3) Dominant groups of food items were selected and the percentage of the number of each dominant item in proportion to the number of the food organisms belonging to the dominant groups is indicated by the letter 'D' representing dominance. All food organisms were classified in 50 food item categories and then they were grouped in 13 main groups (Fig. 2-1), and they were further divided into 1) obligatory bottom animals, 2) organic drifts and 3) actively swimming forms; according to the conditions of the animal communities within the habitat. Since the majority of its food was composed of the obligatory bottom animals ($94.6\%$), the fish appeard to be a typical bottom feeder. And the dominant food organisms of the fish is generally determined by the local composition of the benthic fauna within the fish habitat. And their seasonal rhythm occurs among the food organisms in the stomach by the biological interaction. Locality variation in the population of the same food organism occurs due to the difference of food organisms in the habitat of the fish at Seonam and Garak, and at Seongsan and Hadan the condition of the niche for the fish in the both regions seems to be the same since the composition and the seasonal variation of the organisms were the same. The results may be summarized as follows: 1) The goby mainly feed on the animals of bottom fauna, and the food organisms are deter-mined by the food compositions within the habitat. 2) Seasonal variation of the stomach content shows the seasonal rhythm due to the biological variation of the population and their interaction. 3) The goby shows no preference on specific food, and the food is composed of a variety of animals. 4) Major food items of the goby are Polychaeta, Palaemon modestus, Isopoda, Gammaridea, Insecta (nymphs and larvae), Ilyoplax deschampsi, and Paratye compressa. 5) Logitudinal succession oil the population of the food organisms is apparently recognized within the community of Seongsan, Garak and Seonam. 6) The goby begins to descend toward the estuary and sea around April when the water temperature reaches $20^{\circ}C$, and they begin to return to river waters in September.

  • PDF

Variations in subtidal surface currents observed with HF radar in the costal waters off the Saemangeum areas (새만금 연안역에서 HF radar에 의해 관측된 조하주기 표층해류의 변화)

  • Kim, Chang-Soo;Lee, Sang-Ho;Son, Young-Tae;Kwon, Hyo-Keun;Lee, Kwang-Hee;Choi, Byoung-Hy
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.56-66
    • /
    • 2008
  • Subtidal surface currents are derived from HF radar measurements in the Saemangeum coastal ocean of the Yellow sea in July 2002 and from September to November 2004. The surface current field is analyzed to examine the effect of wind, river plume and coastline change on the spatial distribution and temporal variation of the surface currents. In July 2002, average wind speed was 0.5 m/s and freshwater discharge from the Keum River was $0.88{\times}10^7\;ton/day$. Temporal mean currents ($\overline{U}$) flow to the northwest with speed of $7{\sim}10\;cm/s$ near the Keum River estuary, to the west as fast as 13 cm/s near the opening gap of the Saemangeum $4^{th}$ dyke, and to the northwest off the Gogunsan-archipelago. This flow pattern is a result of the Keum River plume dispersal and tide-residual currents from the opening gap of the Saemangeum $4^{th}$ dyke. Time series of spatially-averaged current (<$U-\overline{U}$>) direction is highly (r=0.98) correlated with wind direction. From September to November 2004, the opening gap of the Saemangeum $4^{th}$ dyke was closed, northwesterly wind blew with speed of 2.5 m/s on average and the Keum River discharge was $1.19{\times}10^7\;ton/day$. Temporal mean current field ($\overline{U}$) has weak surface flow in most of the coastal ocean and relatively strong currents flow to the southwest with speed of 10 cm/s along the shape coastline of the Gogunsan-archipelago and the Saemangeum $4^{th}$ dyke. The strong flow is generated by the prevailing northwesterly wind which pushes the Keum River plume toward the Saemangeum $4^{th}$ dyke. The residual currents from the opening gap of the Saemangeum $4^{th}$ dyke disappeared and correlation coefficient between time series of spatially-averaged current () direction and the wind direction is 0.69.