• Title/Summary/Keyword: Closed chamber

Search Result 223, Processing Time 0.029 seconds

PAHs Formation Characteristics and Fullerenes $(C_{60},\;C_{70})$ Synthesis in a Low-Pressure $C_6H_6/Ar/O_2$ Flame (저압 $C_6H_6/Ar/O_2$ 화염에서 PAHs 생성 특성 및 플러렌$(C_{60},\;C_{70})$ 합성에 대한 연구)

  • Lee, G.W.;Kim, Y.W.;Hwang, J.;Jrung, J.;Choi, M.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.36-44
    • /
    • 2002
  • Carbon molecules with closed-cage structures are called fullerenes $(C_{60},\;C_{70})$, whose applications include super-conductors, sensors, catalysts, optical and electronic device, polymer composites, and biological and medical materials. The synthesis of fullerenes has been recently studied with low-pressure benzene/argon/oxygen flames. The formation of fullerene is known as molecular weight growth processes of PAHs (polycyclic aromatic hydrocarbon). This study presents results of PAHs and fullerene measurements performed in a low-pressure benzene/argon/oxygen normal co-flow laminar diffusion flame. Through the central tube of the burner, benzene vapors carried by argon are injected. The benzene vapors are made in a temperature-controlled bubbler. The burner is located in a chamber, equipped with a sampling system for direct collection of condensable species from the flame, and exhausted to a vacuum pump. Samples of the condensable are analyzed by HPLC (High Performance Liquid Chromatography) to determine the yields of PAHs and fullerene. Also, we computed mole fraction of fullerene and PAHs in a nearly sooting low pressure premixed, one-dimensional benzene/argon/oxygen flame (equivalence ratio ${\Phi}=2.4$, pressure=5.33kPa). The object of computation was to investigate the formation mechanism of fullerenes and PAHs. The computations were performed with CHEMKIN/PREMIX. As a result of this study, fullerenes were synthesized in a low pressure (20torr) $C_6H_6/Ar/O_2$ flames and the highest concentration of fullerene was detected just above the visible surface of a flame.

  • PDF

Photosynthetic Characteristics and a Sensitive Indicator for $O_3$-exposed Platanus orientalis (오존에 노출된 버즘나무의 광합성 특성과 민감성 지표)

  • Lee Jae-Cheon;Oh Chang-Young;Han Sim-Hee;Kim Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.220-226
    • /
    • 2005
  • We investigated the effect of $O_3$ on the photosynthetic characteristics of oriental plane (Platanus orientalis L.) that is used as a side tree or ornamental tree in Korea. Two-year-old oriental plane seedlings were transplanted to pots and transferred into a closed $O_3$ chamber, Photosynthetic pigment content and photosynthetic characteristics of leaves were measured every three weeks during 100 ppb $O_3$ fumigation. There was no visible foliar injury by $O_3$ exposure and the content of photosynthetic pigments did not show significant differences between control and $O_3$-treated seedlings. But photosynthetic rate, stomatal conductance, and water use efficiency in leaves of $O_3$-treated seedlings were reduced after six weeks of ozone fumigation. In addition, reduction of carboxylation efficiency and photochemical efficiency was observed in leaves of $O_3$-treated seedlings after three weeks and six weeks. In accordance with our results, carboxylation efficiency, the most sensitive parameter to $O_3$ stress, was considered to be a suitable indicator of $O_3$ sensitivity.

Effect of Intermittent Drainage on Nitrous Oxide Emission and Global Warming Potential in Rice Paddy Soil

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1187-1193
    • /
    • 2012
  • Water control is mainly one of the key factors that can affect nitrous oxide ($N_2O$) emissions from soils. This study was undertaken to determine the effect of intermittent drainage compared to continuous flooding (conventional water regime) on $N_2O$ emission to global warming potential (GWP) with NPK (standard cultivation practice), NPK+Straw, and PK fertilizations. Nitrous oxide emission rates were collected twice a week using a closed chamber method. With continuous flooding, nitrogen (N) application increased $N_2O$ emission by 106.6% ($0.64kg\;ha^{-1}$ in NPK) with respect to the PK treatment ($0.31kg\;ha^{-1}$), and straw addition to NPK enhanced 148.3% of seasonal $N_2O$ flux ($0.77kg\;ha^{-1}$ in NPK+Straw). Although seasonal $N_2O$ emission slightly increased by 16.1-42.9% with intermittent irrigation, its seasonal $CH_4$ emission drastically reduced at 43.5-52.8% resulting in a lower GWP at 48.9-58.5% with respect to that of continuously flooded treatments ($4.51Mg\;CO_2\;ha^{-1}$, PK; $7.60Mg\;CO_2\;ha^{-1}$, NPK; $14.55Mg\;CO_2\;ha^{-1}$, NPK+Straw). Rice yield, at similar fertilization with the continuously-flooded rice field, was not affected by intermittent irrigation. Conclusively, intermittent irrigation can be very effective and a rational soil management strategy to mitigate GWP with considering rice productivity in a temperate paddy rice field like Korea.

A study on Hemodynamic Effect of Pericardial Patch Graft for Stenosis of Right Ventricle Outflow Tract (우심실유출로협착에 대한 심낭 Patch Graft 에 관한 임상적 연구)

  • Park, Jung-Soo;Jee, Haeng-Ok;Kim, Kun-Ho
    • Journal of Chest Surgery
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 1982
  • The present study was performed to evaluate hemodynamic effects on the pericardial patch graft for stenosis of right ventricle outflow tract in 19 patients of tetralogy of Fallot. The stenosis of right ventricle outflow tract was associated with or without pulmonary annular nar-rowing, pulmonary valvular stenosis, and hypoplastic narrowing of pulmonary artery. Total correction of tetralogy of Fallot was performed under cardiopulmonary bypass with moderate hypothermia and cardioplegic cardiac arrest. Ventricular septal defects were closed with Teflon patch graft. The chamber pressures in the heart were measured before and after a total correction of tetralogy of Fallot. The data of pressure measurement and the results of postoperative observation of pericardial patch were as followings: 1. Systolic and diastolic pressure of right ventricle was decreased after operation from $96.0{\pm}14.7/10.0{\pm}14.4mmHg$ to $61.0{\pm}13.1/8.0{\pm}9.3mmHg$. 2. Systolic and diastolic pressure of pulmonary artery was increased after operation from $18.0{\pm}5.6/10.0{\pm}5.5mmHg$ to $31.0{\pm}10.7/14.0{\pm}4.9mmHg$. 3. Preoperative pressure gradient between right ventricle and pulmonary artery was decreased immediately after operation from 78.0mmHg to 30.0mmHg. 4. It was observed that excellent widening effects of right ventricle outflow tract was resulted from pericardial patch graft. 5. No postoperative bleeding from pericardial patch graft was observed. 6. Aneurysm formation of pericardial patch was not be observed during 1 to 6 years postoperative periods.

  • PDF

Automotive Airbag Inflator Analysis Using Measured Properties of Modern Propellants (추진제 특성을 이용한 에어백 인플레이터 성능 제어에 대한 실험 및 해석에 대한 연구)

  • Seo, Young-Duk;Kim, Gun-Woo;Hong, Bum-Suk;Kim, Jin-Ho;Chung, Suk-Ho;Yoh, Jai-Ick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.53-62
    • /
    • 2010
  • An airbag is composed of housing assembly, door assembly, cushion assembly, and an inflator. The inflator is the essential part that generates gas for airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In this study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed and the results were compared with the tank test data. In the zone of discharge tank the pressure quickly rose, the pattern of pressure curve was very similar to the pressure curve of real test. And in zone 1 & 2 & 3 the mass of products was increased and decreased with time. In zone 4, the mass of products was increased with time like real inflator. From the similarity of pressure curve in zone 4 and closed bomb calculation the modeled results are well correlated with the experimental values.

The effect of 4,4'-bis(N,N-diethylamino)benzophenone on the degree of conversion in liquid photopolymer for dental 3D printing

  • Lee, Du-Hyeong;Mai, Hang Nga;Yang, Jin-Chul;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • PURPOSE. The purpose of this preliminary study was to investigate the effects of adding 4,4'-bis(N,N-diethylamino) benzophenone (DEABP) as a co-initiator to a binary photoinitiating system (camphorquinone-amine) to analyze on the degree of conversion (DC) of a light-cured resin for dental 3D printing. MATERIALS AND METHODS. Cylindrical specimens (N=60, n=30 per group, ${\phi}5mm{\times}1mm$) were fabricated using bisphenol A glycerolate dimethacrylate (BisGMA) both with and without DEABP. The freshly mixed resins were exposed to light in a custom-made closed chamber with nine light-emitting diode lamps (wavelength: 405 nm; power: $840mW/cm^2$) for polymerization at each incidence of light-irradiation at 10, 30, 60, 180, and 300 seconds, while five specimens at a time were evaluated at each given irradiation point. Fourier-transform infrared (FTIR) spectroscopy was used to measure the DC values of the resins. Two-way analysis of variance and the Duncan post hoc test were used to analyze statistically significant differences between the groups and given times (${\alpha}$=.05). RESULTS. In the DEABP-containing resin, the DC values were significantly higher at all points in time (P<.001), and also the initial polymerization velocity was faster than in the DEABP-free resin. CONCLUSION. The addition of DEABP significantly enhanced the DC values and, thus, could potentially become an efficient photoinitiator when combined with a camphorquinone-amine system and may be utilized as a more advanced photopolymerization system for dental 3D printing.

Optical Sensing for Evaluating the Severity of Disease Caused by Cladosporium sp. in Barley under Warmer Conditions

  • Oh, Dohyeok;Ryu, Jae-Hyun;Oh, Sehee;Jeong, Hoejeong;Park, Jisung;Jeong, Rae-Dong;Kim, Wonsik;Cho, Jaeil
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.236-240
    • /
    • 2018
  • Crop yield is critically related to the physiological responses and disease resistance of the crop, which could be strongly affected by high temperature conditions. We observed the changes in the growth of barley under higher than ambient air-temperature conditions using a temperature gradient field chamber (TGFC) during winter and spring. Before the stem extension stage of barley growth, Cladosporium sp. spontaneously appeared in the TGFC. The severity of disease became serious under warmer temperature conditions. Further, the stomata closed as the severity of the disease increased; however, stomatal conductance at the initial stage of disease was higher than that of the normal leaves. This was likely due to the Iwanov effect, which explains that stressed plants rapidly and transiently open their stomata before longer-term closure. In this study, we tested three optical methods: soil-plant analysis development (SPAD) chlorophyll index, photochemical reflectance index (PRI), and maximum quantum yield (Fv/Fm). These rapid evaluation methods have not been used in studies focusing on disease stress, although some studies have used these methods to monitor other stresses. These three indicative parameters revealed that diseased barley exhibited lower values of these parameters than normal, and with the increase in disease severity, these values declined further. Our results will be useful in efficient monitoring and evaluation of crop diseases under future warming conditions.

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

The Ecophysiological Changes of Capsicum annuum on Ozone-Sensitive and Resistant Varieties Exposed to Short-Term Ozone Stress (오존 감수성 및 저항성 고추 품종의 생리생태 변화)

  • Yun, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.128-132
    • /
    • 2004
  • Ozone effects were studied by plant growth chamber to evaluate the impact of ozone ($O_3$) on the physiology of two hot pepper, Capsicum annuum L., cultivars, 'Dabotab' and 'Buchon'. Forty-day old plants with $5{\sim}7$ leaves were exposed to $O_3$ of <20 and 150 nL/L for 8h/d for 3 days. Net photosynthesis and stomatal conductance were measured and foliar injury was described. Foliar damage due to the treated $O_3$ was different from the varieties. 'Dabotab' was most sensitive to $O_3$ and 'Buchon' was resistant. Symptom of ozone damage on the leaves was bifacial necrosis. Decreases of net photosynthesis by $O_3$ were 56% and 40% on 'Dabotab' and 'Buchon', respectively. Decreases of stomatal conductance by $O_3$ were 66% and 63% on each variety. $O_3$ damage on net photosynthesis was started at the low levels of light on the two hot peppers. In addition, assimilation-internal $CO_2$ concentration curves were not different from the two varieties. In conclusion, $O_3$ closed the stomata and decrease net photosynthesis on hot peppers regardless of the ozone sensitivity on leaf injury, but the difference of ecophysiological responses between the two varieties was not found clearly.

Characteristics of Bioaerosol Generation of Household Humidifiers by User Practices (가정용 가습기의 사용자 습관에 따른 실내공기 중 바이오에어로졸의 발생특성)

  • Kim, Ik-Hyeon;Kim, Ki Youn;Kim, Daekeun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.503-509
    • /
    • 2012
  • Objectives: This study was performed in order to evaluate the generation characteristics of airborne bacteria and fungi while operating a household humidifier, in consideration of user habits. Methods: Microbial samples were collected in a closed chamber with a total volume of 2.76 $m^3$, in which a humidifier was operated according to experimental strategies. A cultivation method based on the viable counts of mesophilic heterotrophic bacteria and fungi was performed. Experimental strategies were divided into three classes: the type of water in the water reservoir (tap water, cooled boiled water); the frequency of filling the reservoir (refill every day, no refill); and the sterilization method (sterilization function mode, humidifier disinfectants). Results: Significant increases in the concentration of airborne bacteria were observed while the humidifier was in operation. The concentration had increased to 2,407 $CFU/m^3$ by 120 hours when tap water filled the reservoir without any application of sterilization, while for cooled boiled water, it was merely 393 $CFU/m^3$ at a similar time point. Usages of disinfectant in the water tank were more effective in decreasing bioaerosol generation compared to sterilization function mode operation. Generation characteristics of airborne fungi were similar to those of bacteria, but the levels were not significant in all experiments. Calculated exposure factor can be used as an indicator to compare biorisk exposure. Conclusion: This study identified the potential for bioaerosol generation in indoor environments while operating a household humidifier. User practices were critical in the generation of bioaerosol, or more specifically, airborne bacteria. Proper usage of a humidifier ensures that any biorisks resulting from generated bioaerosol can be prevented.