• Title/Summary/Keyword: Closed Loop Feedback

Search Result 509, Processing Time 0.027 seconds

Mode-decoupling controller for feedback model updating (궤환 모델 개선법을 위한 모드 분리 제어기)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

Mode-decoupling Controller for Feedback Model Updating (궤환 모델 개선법을 위한 모드 분리 제어기)

  • 정훈상;박영진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.955-961
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. But it is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. In this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed Just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

Feedback Control for Expanding Range and Improving Lineraity of Microaccelerometers (가속도계의 동작범위 확장와 선형성 향상을 위한 피드백 제어)

  • Park, Yong-Hwa;Park, Sang-Jun;Choi, Byung-Doo;Ko, Hyoung-Ho;Song, Tae-Yong;Lim, Genu-Won;Huh, Kun-Soo;Park, Jahng-Hyon;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1082-1088
    • /
    • 2004
  • This paer presents a feedback-controlled, MEMS-fabricated microaccelerometer($\mu$XL). The $\mu$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis $\mu$XL fabricated by sacrificial bulk micromachining(SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100Hz. The input range, non-linearity and bias stability are improved from $\pm10\;g\;to\;\pm18g$, from 11.1%FSO to 0.86%FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively.

Feedback stabilization of linear systems with delay in control by receding horizon (지연요소를 갖는 시스템의 안정화 방법)

  • 권욱현
    • 전기의세계
    • /
    • v.28 no.5
    • /
    • pp.44-48
    • /
    • 1979
  • For ordinary systems the receding horizon method has beer proved by the author as a very useful and easy tool to find stable feedback controls. In this paper an open-loop optimal control which minimizes the control energy with a suitable upper limit and terminal control and state constraints is derived and then transformed to the closed-loop control. The stable feedback control law is obtained from the closed-loop control. The stable feedback control law is obtained from the closed-loop control by the receding horizon concept. It is shown by the Lyapunov method that the control law derived from the receding, horizon concept is asymtotically stable under the complete controllability condition. The stable feedback control which is similar to but more general than the receding horizon control is presented in this paper To the author's knowledge the control laws in this paper are easiest to stabilize systems with delay in control.

  • PDF

Robust Pole Assignment in a Specified Disk

  • Nguyen, Van-Giap;Nguyen, Tan-Tien;Lee, Gun-You;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.116-120
    • /
    • 2000
  • This paper presents a method to assign robustly the closed loop system's poles in a specified disk by a state feedback for a linear time invariant system with structured or unstructured uncertainties. THe proposed robust design procedure includes two steps. Firstly, the perturbed closed loop matrix $A_{cl p}$ = $A_{cl}$ + Δ$A_{cl}$ is rearranged such that it is a function of the nominal closed loop matrix $A_{cl}$. Hence, we can control the positions of the perturbed closed loop poles by choosing $A_{cl}$ appropriately. Secondly, the feedback control law F that assigns the closed loop poles of the perturbed system in a specified disk is determined from the equation $A_{cl}$ = A + BF. A procedure for finding F is proposed based on partitioning every matrix of the equation $A_{cl}$ = A + BF in the horizontal direction.

  • PDF

Performance analysis of feedback controller for vibratory gyroscope at various vacuum levels

  • Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1537-1541
    • /
    • 2003
  • In this paper, presented is a feedback control performance of vibratory gyroscope at various vacuum levels. Micro gyroscope, whose operation is based on the vibrating motion at the vacuum conditions, is highly influenced by the vacuum level of the operating circumstances. In general, we apply the feedback control scheme to the gyroscope in order to improve the performances of the sensor. And control performances of the gyroscope are related to those vacuum levels. So we need investigate the performances of the closed loop control at various vacuum conditions comparing with those of the open loop. The experimental results show that the sensitivity of the closed loop is less than that of the open loop especially in low vacuum conditions. Therefore, there should be trade-off between sensitivity and other sensor performances such as linearity, bandwidth when we apply feedback control to the gyroscope.

  • PDF

Design of a repetitive controller for the system with unstructured uncertainty (비구조적인 불확실성을 가지는 시스템에 대한 반복 제어기의 설계)

  • 도태용;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.779-782
    • /
    • 1996
  • Repetitive control is a proposed control strategy in view of the internal model principle and achieves a high accuracy asymptotic tracking property by implementing a model that generates the periodic signals of period into the closed-loop system. Since the repetitive control system contains a periodic signal generator with positive feedback loop, which reduces the stability margin, in the overall closed-loop system, the stability of the closed-loop system should be considered as an important problem. In case that a real system has plant uncertainties which are not represented through modeling, the robust stability problem of the repetitive control system has not been considered sufficiently. In this paper, we propose the robust stability condition for the system with modeling uncertainty. The proposed robust stability condition will be obtained using the robust performance condition in the H$_{\infty}$ control. Moreover, by use of the proposed robust stability condition, we propose a procedure that designs a repetitive controller and a feedback controller simultaneously which can stabilize the overall closed-loop system robustly and which can also do the closedloop system without repetitive controller..

  • PDF

Adaptive Cooperative Relay Transmission Technique Using Closed-loop MIMO Scheme for Duplex Communication System (양방향 통신 시스템에서 폐회로 다중 안테나 기법을 적용한 적응형 협동 중계 전송 기술)

  • Lee, Kwan-Seob;Kim, Young-Ju
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • In this paper, We propose that the adaptive cooperative relay transmission technique using closed-loop MIMO scheme for duplex communication system. As the mobility between relay and base station is little, closed-loop MIMO is better diversity gain than open-loop MIMO. At this time, more than one relaying terminals are included in one cooperative group to share their transmission and take precoding weight feedback. For minimization of throughput reduction caused by increasing feedback bits, we use codebook-based MRT that limit the number of feedback bits. Among the cooperative relay group, the best relays are selected from the base stataion and get the feedback. A protocol senarios are also proposed for this relay system.

Feedback Control for Expanding Range and Improving Linearity of Microaccelerometers

  • Park, Yong-Hwa;Shim, Joon-Sub;Park, Sang-Jun;Kwak, Dong-Hun;Ko, Hyoung-Ho;Song, Tae-Yong;Huh, Kun-Soo;Park, Jahang-Hyon;Cho, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1706-1710
    • /
    • 2004
  • This paper presents a feedback-controlled, MEMS-fabricated microaccelerometer (${\mu}$XL). The ${\mu}$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis ${\mu}$XL fabricated by sacrificial bulk micromachining (SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100 Hz. The input range, non-linearity and bias stability are improved from ${\pm}$10 g to ${\pm}$18 g, from 11.1 %FSO to 0.86 %FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively

  • PDF

Controller Auto-tuning Scheme for Improving Feedback System Performance in Frequency Domain (주파수역에서의 피드백시스템의 성능향상을 위한 제어기 Atuo-tuning 기법)

  • 정유철;이건복
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.26-30
    • /
    • 2001
  • Controller refinement scheme to improve the performance of a conventional system automatically in frequency domain is proposed. The controller automatic tuning method features using experimental frequency responses of the conventional closed-loop system, the conventional controller, and the improved closed-loop system, instead of poorly modeled plant due to non-linearities and disturbances. The improved closed-loop system characteristics is automatically acquired by the con-ventional closed-loop system characteristics and the proposed performance index in system bandwidth. And the proper controller is realized by least squares approximation in frequency domain. To testify the usefulness of the approach, the path tracking control of robot arm is performed. Experimental results and analytic results are well-matched.

  • PDF