• Title/Summary/Keyword: Closed Eyes Detection

Search Result 11, Processing Time 0.029 seconds

Drowsiness Detection Method during Driving by using Infrared and Depth Pictures

  • You, Gang-chon;Park, Do-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • In this paper, we propose the drowsiness detection method for car driver. This paper determines whether or not the driver's eyes are closed using the depth and infrared videos. The proposed method has the advantage to detect drowsiness without being affected by illumination. The proposed method detects a face in the depth picture by using the fact that the nose is closest to the camera. The driver's eyes are detected by using the extraction of harr-like feature within the detected face region. This method considers to be drowsiness if eyes are closed for a certain period of time. Simulation results show the drowsiness detection performance for the proposed method.

A Method for the Detection of an Open/Closed Eye and a Pupil using Black and White Bipolarization (흑백 양극화를 이용한 눈의 개폐 및 눈동자 검출 방법)

  • Moon, Bong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.89-96
    • /
    • 2009
  • A lot of information is contained in an image or a movie rather than in a text, and it is very important thing to extract context from them. In this study, we propose a method to detect an open/closed eye and determine the location of a pupil in an eye image which is extracted from a movie. The image is normalized using transformation into bipolarization with white and black color and horizontalizing, and we measure width and height of an eye. With these information, we can determine the open or closed eye and the location of the pupil. Experiments were done with 52 images of eyes from movies using this method, and we get good results with 98% of correctness in detection of open/closed eyes and 95% in detection of pupil's location.

System for Detecting Driver's Drowsiness Robust Variations of External Illumination (외부조명 변화에 강인한 운전자 졸음 감지 시스템)

  • Choi, WonWoong;Pan, Sung Bum;Shin, Ju Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1024-1033
    • /
    • 2016
  • In this study, a system is proposed for analyzing whether driver's eyes are open or closed on the basis of images to determine driver's drowsiness. The proposed system converts eye areas detected by a camera to a color space area to effectively detect eyes in a dark situation, for example, tunnels, and a bright situation due to a backlight. In addition, the system used a thickness distribution of a detected eye area as a feature value to analyze whether eyes are open or closed through the Support Vector Machine(SVM), representing 90.09% of accuracy. In the experiment for the images of driver wearing glasses, 83.83% of accuracy was obtained. In addition, in a comparative experiment with the existing PCA method by using Eigen-eye and Pupil Measuring System the detection rate is shown improved. After the experiment, driver's drowsiness was identified accurately by using the method of summing up the state of driver's eyes open and closes over time and the method of detecting driver's eyes that continue to be closed to examine drowsy driving.

A Study on an Open/Closed Eye Detection Algorithm for Drowsy Driver Detection (운전자 졸음 검출을 위한 눈 개폐 검출 알고리즘 연구)

  • Kim, TaeHyeong;Lim, Woong;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.67-77
    • /
    • 2016
  • In this paper, we propose an algorithm for open/closed eye detection based on modified Hausdorff distance. The proposed algorithm consists of two parts, face detection and open/closed eye detection parts. To detect faces in an image, MCT (Modified Census Transform) is employed based on characteristics of the local structure which uses relative pixel values in the area with fixed size. Then, the coordinates of eyes are found and open/closed eyes are detected using MHD (Modified Hausdorff Distance) in the detected face region. Firstly, face detection process creates an MCT image in terms of various face images and extract criteria features by PCA(Principle Component Analysis) on offline. After extraction of criteria features, it detects a face region via the process which compares features newly extracted from the input face image and criteria features by using Euclidean distance. Afterward, the process finds out the coordinates of eyes and detects open/closed eye using template matching based on MHD in each eye region. In performance evaluation, the proposed algorithm achieved 94.04% accuracy in average for open/closed eye detection in terms of test video sequences of gray scale with 30FPS/$320{\times}180$ resolution.

Drowsiness Sensing System by Detecting Eye-blink on Android based Smartphones

  • Vununu, Caleb;Seung, Teak-Young;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.797-807
    • /
    • 2016
  • The discussion in this paper aims to introduce an approach to detect drowsiness with Android based smartphones using the OpenCV platform tools. OpenCV for Android actually provides powerful tools for real-time body's parts tracking. We discuss here about the maximization of the accuracy in real-time eye tracking. Then we try to develop an approach for detecting eye blink by analyzing the structure and color variations of human eyes. Finally, we introduce a time variable to capture drowsiness.

Sleepiness Determination of Driver through the Frequency Analysis of the Eye Opening and Shutting (눈 개폐의 빈도수를 통한 운전자의 졸음판단 분석)

  • Gong, Do-Hyun;Kwak, Keun-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.464-470
    • /
    • 2016
  • In this paper, we propose an improved face detection algorithm and determination method for drowsiness status of driver from the opening and closing frequency of the detected eye. For this purpose, face, eyes, nose, and mouth are detected based on conventional Viola-Jones face detection algorithm and spatial correlation of face. Here the spatial correlation of face is performed by DFP(Detect Face Part) based on seven characteristics. The experimental results on Caltect face image database revealed that the detection rates of noise particularly showed the improved performance of 13.78% in comparison to that of the previous Viola-Jones algorithm. Furthermore, we analyze the driver's drowsiness determination cumulative value of the eye closed state as a function of time based on SVM (Support Vector Machine) and PERCLOS(Percentage Closure of Eyes). The experimental results confirmed the usefulness of the proposed method by obtaining a driver's drowsiness determination rate of 93.28%.

A Driver's Condition Warning System using Eye Aspect Ratio (눈 영상비를 이용한 운전자 상태 경고 시스템)

  • Shin, Moon-Chang;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.349-356
    • /
    • 2020
  • This paper introduces the implementation of a driver's condition warning system using eye aspect ratio to prevent a car accident. The proposed driver's condition warning system using eye aspect ratio consists of a camera, that is required to detect eyes, the Raspberrypie that processes information on eyes from the camera, buzzer and vibrator, that are required to warn the driver. In order to detect and recognize driver's eyes, the histogram of oriented gradients and face landmark estimation based on deep-learning are used. Initially the system calculates the eye aspect ratio of the driver from 6 coordinates around the eye and then gets each eye aspect ratio values when the eyes are opened and closed. These two different eye aspect ratio values are used to calculate the threshold value that is necessary to determine the eye state. Because the threshold value is adaptively determined according to the driver's eye aspect ratio, the system can use the optimal threshold value to determine the driver's condition. In addition, the system synthesizes an input image from the gray-scaled and LAB model images to operate in low lighting conditions.

Mean Phase Coherence as a Supplementary Measure to Diagnose Alzheimer's Disease with Quantitative Electroencephalogram (qEEG)

  • Che, Hui-Je;Jung, Young-Jin;Lee, Seung-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • Noninvasive detection of patients with probable Alzheimer's disease (AD) is of great importance for assisting a medical doctor's decision for early treatment of AD patients. In the present study, we have extracted quantitative electroencephalogram (qEEG) variables, which can be potentially used to diagnose AD, from resting eyes-closed continuous EEGs of 22 AD patients and 27 age-matched normal control (NC) subjects. We have extracted qEEG variables from mean phase coherence (MPC) and EEG coherence, evaluated for all possible combinations of electrode pairs. Preliminary trials to discriminate the two groups with the extracted qEEG variables demonstrated that the use of MPC as a supplementary or alternative measure for the EEG coherence may enhance the accuracy of noninvasive diagnosis of AD.

An Illumination-Robust Driver Monitoring System Based on Eyelid Movement Measurement (조명에 강인한 눈꺼풀 움직임 측정기반 운전자 감시 시스템)

  • Park, Il-Kwon;Kim, Kwang-Soo;Park, Sangcheol;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.255-265
    • /
    • 2007
  • In this paper, we propose a new illumination-robust drowsy driver monitoring system with single CCD(Charge Coupled Device) camera for intelligent vehicle in the day and night. For this system that is monitoring driver's eyes during a driving, the eye detection and the measure of eyelid movement are the important preprocesses. Therefore, we propose efficient illumination compensation algorithm to improve the performance of eye detection and also eyelid movement measuring method for efficient drowsy detection in various illumination. For real-time application, Cascaded SVM (Cascaded Support Vector Machine) is applied as an efficient eye verification method in this system. Furthermore, in order to estimate the performance of the proposed algorithm, we collect video data about drivers under various illuminations in the day and night. Finally, we acquired average eye detection rate of over 98% about these own data, and PERCLOS(The percentage of eye-closed time during a period) are represented as drowsy detection results of the proposed system for the collected video data.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF