• Title/Summary/Keyword: Closed Cooling Water

Search Result 63, Processing Time 0.022 seconds

Performance Evaluation and Economic Estimation of Ground Source Heat Pump Cooling and Heating System (지열 냉난방 시스템의 성능 및 경제성 평가)

  • Lim Hyo Jae;Song Yoon Seok;Kong Hyoung Jin;Park Seong Koo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.296-300
    • /
    • 2004
  • Performance evaluation and economic estimation were conducted on the water to water GSHP (Ground Source Heat Pump) installed in existing building. Ground heat exchanger was a closed vertical loop type and sized to be 5 boreholes and 100m depth per borehole. Operation efficiency of the system shows that, COP increased from 3.0 to 4.2 with entering water temperature in heating operation, however, COP decreased from 5.0 to 3.7 in cooling operation. Economic estimation was analyzed by LCC (Life Cycle Cost) method and it showed that GSHP could save 68% of cost compare to the conventional oil source. Thus, despite of the large amount of initial cost, GSHP has a economic advantage to the other energy sources.

Study on The Corrosion Inhibition Characteristics of Carbon Steel by Sodium Phosphate And Sodium Nitrite (삼인산 나트륨과 아질산 나트륨에 의한 탄소강 부식방지 특성 연구)

  • Moon, Jeon-Soo;Lee, Jae-Kun
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2010
  • Sodium nitrite is widely used as one of the popular corrosion inhibitors for the protection of ferrous metal in closed cooling water system, such as a diesel engine and a chiller. The optimum treatment conditions are studied through laboratory tests using linear polarization resistance (LPR) technique. Corrosion rate of the carbon steel electrode could be maintained less than $2.5{\times}10^{-3}$ mmpy in the test condition of 500 ppm as ${NO_2}^-$, 200 ppm as $Cl^-$, $70^{\circ}C$ and pH 6.8. The pH control is confirmed not to be an important factor in the protection of carbon steel by sodium nitrite inhibitor. The addition of tolyltriazole was needed for the protection of the copper alloy in the sodium nitrite treatment system.

Analysis of Test Operations Effect of Open-Closed Loops Complex Geothermal System Combined with Groundwater Well (지하수정호 결합 복합지열시스템의 시범운영 효과분석)

  • Song, Jae-Yong;Kim, Ki-Joon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.475-488
    • /
    • 2018
  • This study evaluates geothermal system efficiency in terms of input power and heat exchange volume on the heat-source and load sides, by applying a combined open-closed type loop system comprising a geothermal system and a groundwater well to a cultivation site. In addition, this study analyzes the effects of heating and cooling for a complex geothermal system, by evaluating the temperatures of an external site and a cultivation site during operation. During cooling operations the heat exchange volume on the heat source side, average 90.0kW/h for an open type system with an input of 235L/minute groundwater, and 40.1kW/h for a closed type system with an input of 85L/minute circulating water, for a total average heat exchange volume of 130.1kW/h. The actual heat exchange volume delivered on the load side averages 110.4kW/h. The average EER by analysis of the geothermal system's cooling efficiency is 5.63. During heating operation analysis, the heat exchange volume on the heat source side, average 60.4kW/h in an open type system with an input of 266L/minute groundwater, and 22.4kW/h in closed type system with an input of 86L/minute circulating water, for a total average heat exchange volume of 82.9kW/h. The actual heat exchange volume delivered on the load side averages 112.0kW/h in our analysis. The average COP determined by analysis of the geothermal system's heating efficiency is 3.92. Aa a result of the tradeoff between the outside temperature and the inside temperature of the production facility and comparing the facility design with a combined well and open-closed loops geothermal(CWG) system, we determine that the 30RT-volume CWG system temperature are lower by $3.4^{\circ}C$, $6.8^{\circ}C$, $10.1^{\circ}C$ and $13.4^{\circ}C$ for ouside temperature is of $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$, respectively. Based on these results, a summer cooling effect of about $10^{\circ}C$ is expected relative to a facility without a CWG system as the outside temperature is generally ${\geq}30^{\circ}C$. Our results suggest that a complex geothermal system provides improvement under a variety of conditions even when heating conditions in winter are considered. Thus It is expected that the heating-cooling tradeoffs of complex geothermal system are improved by using water screen.

Analysis of Optimum Water Cooling Conditions and Heat Exchange of LED Lamps for Plant Growth (식물생장용 LED 램프의 적정 수냉조건 및 열교환량 분석)

  • Park, Jong-Ho;Lee, Jae-Su;Kim, Dong-Eok;Kim, Yong-Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.334-341
    • /
    • 2011
  • This study was conducted to compare the characteristics of heat dissipated from LED lamps with water cooling method and natural cooling method in a closed-type plant production system (CPPS) and to determine the optimum water temperature and flow rate for LED lamps with water cooling method. The experiments were performed in CPPS maintained at temperature of $24^{\circ}C$ and humidity of 70%. As compared to the LED lamps operated at water temperature of $22.5{\pm}1.2^{\circ}C$ and flow rate of $1,521{\pm}3.3\;mL{\cdot}min^{-1}$, air temperature under LED lamps with natural cooling was approximately increased by $1^{\circ}C$ and photosynthetic photon flux was decreased by $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. PPF illuminated from LED lamps was affected by forward voltage varied by the surface temperature of LED lamps. Forward voltage of LED lamps was decreased with increasing surface temperature and then PPF was proportionately decreased. Five levels ($14^{\circ}C,\;17^{\circ}C,\;20^{\circ}C,\;23^{\circ}C,\;26^{\circ}C$) of water temperature and three levels ($500\;mL{\cdot}min^{-1}$, $1,000\;mL{\cdot}min^{-1}$, $1,500\;mL{\cdot}min^{-1}$) of flow rate were provided to analyze the change of surface temperature and heat exchange of LED lamps. Heat exchange was increased with decreasing water temperature and increasing flow rate. At flow rate of $1,000-1,500\;mL{\cdot}min^{-1}$ and water temperature of 22.0-$22.6^{\circ}C$, surface temperature of LED lamps can be approached to $24^{\circ}C$ that was almost same as air temperature in CPPS. The calorific value generated from LED lamps used in the study was estimated to be $103.0\;kJ{\cdot}h^{-1}$.

Spray Flow Characteristics of Twin-fluid Water Mist Nozzle for Fire Suppression (2유체 미세 물분무 소화노즐의 분무유동 특성)

  • Kim, Bong-Hwan;Choi, Hyo-Sung;Kim, Dong-Keon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.60-66
    • /
    • 2011
  • In the present investigation, experimental studies were conducted on the fire suppression performance of twin-fluid water mist spray which is subjected to thermal radiation in a closed space. Downward-directed water-mist sprays, interacting with an under kerosene pool fire, were investigated in a test facility. The mass mean diameter of water-mist droplets were measured by PMAS under various flow conditions. The developed twin-fluid water mit spray nozzle satisfied the criteria of NFPA 750, Class 1. The mechanism of fire suppression by fine water mist was concluded to be the cooling of the fire surface which leads to the suppression of fuel evaporation. It was proved that the automatic twin-fluid water mist spray system under lower pressures could be applied to an industrial facilities.

A study on the Water Mist Fire Suppression Performance (미세 물 분무 소화 성능에 관한 연구)

  • 김봉환;김용판;문철진;홍철현;이형욱
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.61-65
    • /
    • 2002
  • The present study was numerically and experimentally performed to investigate the fire suppression performance of water mist spray subjected to thermal radiation in closed space. Downward-directed water mist sprays to interact with an under kerosine pool fire were investigated in test facility. The mass mean diameters of water mist droplet were measured by PMAS under various flow conditions. The developed water mist spray nozzle was satisfied to the criteria of NFPA 750, Class 1. The mechanism of the fire suppression by water mist was concluded to be cooling of the fire surface which lead to suppressed of fuel evaporation. It was proved that the water mist spray system under lower pressures could be applied to underground fire protection system.

  • PDF

A Study on the Performance of Water Mist Spray Fire Protection System (미세물분무 소화성능에 관한 연구)

  • 김봉환;김용판;문철진;홍철현;이형욱;최현호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.572-578
    • /
    • 2003
  • The present study was numerically and experimentally performed to investigate the fire suppression performance of water mist spray subjected to thermal radiation in closed space. Downward-directed water mist sprays to interact with an under kerosine pool fire were investigated in test facility The mass mean diameters of water mist droplet were measured by PMAS under various flow conditions. The developed water mist spray nozzle was satisfied to the criteria of NFPA 750, Class 1. The mechanism of the fire suppression by water mist was attributed to the cooling of the fire surface which lead to suppressed of fuel evaporation. It was proved that the water mist spray system under lower pressures could be applied to underground fire protection system.

A Study on Partial Load Performance of Absorption Type Heat Pump for Waste Heat Recovery of Closed Cooling Water (기기냉각수 폐열회수용 흡수식 히트펌프의 부분부하 성능에 관한 연구)

  • Park, Byungchul;Kim, Taehyeong;Kim, Kwangsu
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.47-54
    • /
    • 2019
  • As absorption type heat pump for waste heat recovery is installed in combined cycle power plant for Energy Service Company, performance test is implemented to confirm the operation data on partial load. The operation data changes according to the heat pump operation on partial load are as follows. Total heat output increases, because waste heat of closed cooling water and a portion of LP steam from HRSG is supplied. But electric power output of steam turbine is reduced, because LP steam to steam turbine is reduced. And heat output from HP district heater and LP district heater is reduced, because HP turbine exhaust steam to HP district heater and LP district heater is reduced. On partial load operation, turbine output reduction is higher than the base load operation. Therefore, on partial load, heat pump should be operated in consideration of the heat output increase and electric power output reduction.

Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling (열원 냉각용 루프 써모사이폰의 작동 특성)

  • Choi, Du-Sung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

Experimental Investigation of an Cross-Flow Air-Cooled Plate Heat Exchanger with Single-Wave and Double-Wave Plates (단일굴곡 및 이중굴곡 판 형상을 갖는 직교류 공랭식 판형열교환기의 전열특성에 대한 실험적 연구)

  • Kim, Min-Sung;Paik, Young-Jin;Lee, Jae-Hoon;Park, Seong-Ryong;Ra, Ho-Sang;Jeong, Jae-Hoon;Lim, Hyug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.347-354
    • /
    • 2009
  • Experimental study on a cross-flow air-cooled plate heat exchanger (PHE) was performed. Two types of PHEs were manufactured either with single-wave plates or with double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal hot water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, prototype single-wave and double-wave PHEs were designed and tested in a laboratory scale experiments. From the tests, the double-wave PHE shows approximately 50% enhanced heat transfer performance compared to the single-wave PHE. However, the double-wave PHE costs 30% additional pressure drop. For the commercialization, a wide channel design for air flow would be essential for performance and reliability.