• Title/Summary/Keyword: Cloning and Expression

Search Result 1,014, Processing Time 0.055 seconds

Molecular cloning, expression and characterization of a squalene synthase gene from grain amaranth (Amaranthus cruentus L.)

  • Park, Young-Jun;Nemoto, Kazuhiro;Matsushima, Kenichi;Um, Han-Yong;Choi, Jung-Hoon;Oh, Chan-sung;Nishikawa, Tomotaro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.89-89
    • /
    • 2017
  • A gene encoding squalene synthase from grain amaranth was cloned and characterized. The full-length cDNA was 1805-bp long and contained a 1248-bp open reading frame encoding a protein of 416 amino acids with a molecular mass of 47.6 kDa. Southern blot analysis revealed that the A. cruentus genome contained a single copy of the gene. Comparison of the cDNA and genomic sequences indicated that the amaranth SQS gene had 12 introns and 13 exons. All of the exons contributed to the coding sequence. The predicted amino acid sequence of the SQS cDNA shared high homology with those of SQSs from several other plants. It contained conserved six domains that are believed to represent crucial regions of the active site. We conducted qRT-PCR analyses to examine the expression pattern of the SQS gene in seeds at different developmental stages and in several tissues. The amaranth SQS gene was low levels of SQS transcripts at the initial stage of seed development, but the levels increased rapidly at the mid-late developmental stages before declining at the late developmental stage. These findings showed that the amaranth SQS is a late-expressed gene that is rapidly expressed at the mid-late stage of seed development. In addition, we observed that the SQS mRNA levels in stems and roots increased rapidly during the four- to six-leaf stage of development. Therefore, our results showed that the expression levels of SQS in stem and root tissues are significantly higher than those in leaf tissues. In present study provides useful information about the molecular characterization of the SQS clone isolated from grain amaranth. Finally, a basic understanding of these characteristics will contribute to further studies on the amaranth SQS.

  • PDF

Molecular Cloning and Functional Expression of esf Gene Encoding Enantioselective Lipase from Serratia marcescens ES-2 for Kinetic Resolution of Optically Active (S)-Flurbiprofen

  • Lee, Kwang-Woo;Bae, Hyun-Ae;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • An enantioselective lipase gene (esf) for the kinetic resolution of optically active (S)-flurbiprofen was cloned from the new strain Serratia marcescens ES-2. The esf gene was composed of a 1,845-bp open reading frame encoding 614 amino acid residues with a calculated molecular mass of 64,978 Da. The lipase expressed in E. coli was purified by a three-step procedure, and it showed preferential substrate specificity toward the medium-chain-length fatty acids. The esf gene encoding the enantioselective lipase was reintroduced into the parent strain S. marcescens ES-2 for secretory overexpression. The transformant S. marcescens BESF secreted up to 217kU/ml of the enantioselective lipase, about 54-fold more than the parent strain, after supplementing 3.0% Triton X-207. The kinetic resolution of (S)-flurbiprofen was carried out even at an extremely high (R,S)-flurbiprofen ethyl ester [(R,S)-FEE] concentration of 500 mM, 130 kU of the S. marcescens ES-2 lipase per mmol of (R,S)-FEE, and 1,000 mM of succinyl ${\beta}-cyclodextrin$ as the dispenser at $37^{\circ}C$ for 12h, achieving the high enantiomeric excess and conversion yield of 98% and 48%, respectively.

Porcine somatic cell nuclear transfer using telomerase reverse transcriptase-transfected mesenchymal stem cells reduces apoptosis induced by replicative senescence

  • Jeon, Ryounghoon;Rho, Gyu-Jin
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) have been widely used as donor cells for somatic cell nuclear transfer (SCNT) to increase the efficiency of embryo cloning. Since replicative senescence reduces the efficiency of embryo cloning in MSCs during in vitro expansion, transfection of telomerase reverse transcriptase (TERT) into MSCs has been used to suppress the replicative senescence. Here, TERT-transfected MSCs in comparison with early passage MSCs (eMSCs) and sham-transfected MSCs (sMSCs) were used to evaluate the effects of embryo cloning with SCNT in a porcine model. Cloned embryos from tMSC, eMSC, and sMSC groups were indistinguishable in their fusion rate, cleavage rate, total cell number, and gene expression levels of OCT4, SOX2 and NANOG during the blastocyst stage. The blastocyst formation rates of tMSC and sMSC groups were comparable but significantly lower than that of the eMSC group (p < 0.05). In contrast, tMSC and eMSC groups demonstrated significantly reduced apoptotic incidence (p < 0.05), and decreased BAX but increased BCL2 expression in the blastocyst stage compared to the sMSC group (p < 0.05). Therefore, MSCs transfected with telomerase reverse transcriptase do not affect the overall development of the cloned embryos in porcine SCNT, but enables to maintain embryo quality, similar to apoptotic events in SCNT embryos typically achieved by an early passage MSC. This finding offers a bioengineering strategy in improving the porcine cloned embryo quality.

Molecular Cloning of Estrogen Receptor $\alpha$ in the Masu Salmon, Oncorhynchus masou

  • Sohn, Young Chang
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • A cDNA encoding the masu salmon, Oncorhynchus masou, estrogen receptor $\alpha$ (msER$\alpha$) was cloned from the pituitary gland by polymerase chain reaction (PCR). This cDNA contains an open reading frame encoding 513 amino acid residues, and the calculated molecular weight of this protein is about 56,430 Dalton. The amino acid sequences of the DNA binding and ligand binding domains of msER$\alpha$ showed high homology to those of other fish species (84-100%). Reverse transcription PCR analysis showed that the mRNA level of msER$\alpha$ in the pituitary was slightly higher in estradiol-17$\beta$(E2) injected masu salmon than that of control fish. To test the biological activity of msER$\alpha$, the cDNA was ligated to a mammalian expression vector and transfected into a gonadotrope-derived cell line, L$\beta$T2, with a reporter plasmid including estrogen responsive element. Expression of the reporter protein, luciferase, was E2 and msER$\alpha$-dependent. The masu salmon ER$\alpha$ is structurally conserved among teleost species and functions as a transcriptional activator in the pituitary cells.

Cloning and Sequencing of the ${\beta}-Amylase$ Gene from Paenibacillus sp. and Its Expression in Saccharomyces cerevisiae

  • Jeong, Tae-Hee;Kim, Hee-Ok;Park, Jeong-Nam;Lee, Hye-Jin;Shin, Dong-Jun;Lee, Hwang-Hee Blaise;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.65-71
    • /
    • 2001
  • A gene from Paenibacillus sp. KCTC 8848P encoding ${\beta}-amylase$ was cloned and expressed in Escherichia coli. The Paenibacillus ${\beta}-amylase$ gene cosisted of a 2,409-bp open reading frame without a translational stop codon, encoding a protein of 803 amino acids. The presumed ribosime-binding site, GGAGG, was located 10 bp upstream from the TTG initiation codon. The deduced amino acid sequence of the ${\beta}-amylase$ gene had a 95% similarity to the ${\beta}-amylase$ of Bacillus firmus. The ${\beta}-amylase$ gene was introduced into wild-type strains of Saccharomyces cerevisiae using a linearized yeast integrating vector containing a geneticin resistance gene and its product was secreted into the culture medium.

  • PDF

Extracellular Production of Alpha-Interferon by Recombinant Escherichia coli : Part I. Construction of Expression Vectors (유전자 재조합 대장균을 사용한 Alpha-interferon의 생산과 분비: 제 1 부. 발현벡터의 제작)

  • 노갑수;최차용
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1990
  • We constructed hybrid plasmids to allow controlled and extracellular production of human alpha-interferon in Escherichia coli. The hybrid plassmids were constructed by transferring alpha-lFN gene from plasmid Hif-2h which has the alpha-lFN gene at PstI restriction site of pBR322, to plasmids pIN -IIIB3 and pIN-IIIC3 at restriction sites between HindIII and BamHI. Plasmids pIN-IIIB3 and pIN-IIIC3 carry E. coli lipoprotein promoter, lac promoter and operator in tandem. The plasmids also have lacl genes which encode for lac repressors, which allows controlled expression of genes cloned to the plasmids by using of inducer IPTG. Lipoprotein signal sequence is located just ahead of cloning sites of the plasmids, which helps cells to excrete or secrete cloned gene products. Plasmid pUC9 was used as a intermediate vector for transferring of alpha-lFN gene from Hif-2h to pIN vectors in order to solve the problem of different restriction sites between Hif-2h and pIN vectors.

  • PDF