• Title/Summary/Keyword: Clone animal

Search Result 129, Processing Time 0.023 seconds

Polymorphic Diversity of UBX Domain D from cDNA Isolated from Pectoral Muscle of Korean Native Chicken

  • Sun, Sang-Soo;Kamyab, Abdolreza;Firman, Jeff
    • Korean Journal of Poultry Science
    • /
    • v.38 no.3
    • /
    • pp.191-195
    • /
    • 2011
  • The objectives of this study are to identify specific functional genes which are related with growth and protein structure of the pectoral muscle of Korean native chicken. Pectoral muscle was isolated from three Korean native chickens (KNC, red brown, 12 months old, 2.41 ${\pm}$ 0.24 kg) and three Cornish chickens (16 month old, 2.76 ${\pm}$ 3.0 kg). The subtraction cDNA library was prepared in PCR4 Blunt-TOPO vector. The DNA sequence homology was compared with other breeds and species in GenBank. A clone NDS-81 was found to be unique for the DNA sequence homology with UBX family. Their partial sequence has high homology (98%) with chicken UBX domain D. Chicken UBX domain has chicken (93%), cattle (68%), dog (67%), mouse (64%) and, human (63%) nucleotide sequence homology. Several regions were mutated from T in chicken to C or G in the NDS-81 clone. The first site is LAD in chicken, but it was expressed as (L)RM in clone NDS-81. In this site, amino acids were changed from Ala to Arg, and from Asp to Met. The second site was changed from ER (Arg) in chicken to ED (Asp) in clone NDS-81. They are both containing functional side chains and play an important role in binding other proteins. Therefore, the clone NDS-81 could be a different candidate gene for the UBX family gene and could related with pectoral muscle structure of Korean native chicken.

Variation of Mitochondrial DNA in Striped Field Mice, Apodemus agrarius coreae Thomas(Mammalia, Rodentia), from the Korean Penisula (한반도산 등줄쥐 Apodemus agrarius corease Thomas(포유강, 설치목)의 미토콘드리아 DNA의 변이)

  • 고흥선;유상규;김상복;유병선
    • Animal Systematics, Evolution and Diversity
    • /
    • v.9 no.2
    • /
    • pp.171-179
    • /
    • 1993
  • Thirty nine samples of striped field mice (Apodemus agrarius coreae Thomas) from eight localities in the Korean peninsula were used for the analyses of mitochondria1 DNA (mtDNA) fragment patterns resulted from the digestion with eight restriction enzymes. A total of 31 fragments were recognized and seven mtDNA clones were revealed: one clone consisted of 32 among 39 samples from eight localities (1 of 1 from Sogcho, 4 of 5 from Mt. Chiak, 3 of 3 from Mt. Weolak, 2 of 2 from Mt. Sogri, 2 of 2 from Mt. Deokyoo, 3 of 4 from Mt. Jiri, 2 of 4 from Haenam, and 15 of 18 from Cheongju). The nucleotide-sequence divergences (p) among seven mtDNA clones ranged from 0.2% to 2.3% and distinct subgroups were not resulted from the grouping of these clones. It is confirmed that striped field mcie from the Korean peninsula is a single subspecies of Apodemus agrarius (A. agrarius coreae) because they were not divided into separate subgroups in their mtDNA genotypes.

  • PDF

Analysis of Growth and Hematologic Characteristics of Cloned Puppies (체세포 복제 자견의 성장 및 혈액학적 특성 분석)

  • Kim, Dong-Hoon;Choi, Mi-Kyung;No, Jin-Gu;Park, Jong-Ju;Yeom, Dong-Hyeon;Kim, Hyun-Min;Choi, Bong-Hwan;Kim, Dong-Kyo;Park, Jin-Ki;Yoo, Jae Gyu
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.229-235
    • /
    • 2013
  • The objective of this study was to monitor health conditions of four genetically identical somatic cells cloned Labrador retriever puppies by estimation of body weight and analysis of hematologic and serologic characteristics. Naturally ovulated oocytes and donor cells were used for somatic cell nuclear transfer (SCNT). Donor cells and enucleated oocytes were followed by electric fusion, chemical activation and surgical embryo transfer into the oviducts of surrogate females. Two recipients became pregnant; two maintained pregnancy to term, and four live puppies were delivered by Caesarean section. The cloned Labrador retrievers were genetically identical to the nuclear donor dog. The body weight of clone-1, -2, -3, and -4 was increased from 0.66, 0.40, 0.39, and 0.37 kg at birth to 6.2, 6.6, 6.2, and 6.0 kg at 8 weeks of age, respectively. Although clone-4 had lower numbers of RBC than reference range, the most of RBC and WBC related heamatologic results of cloned puppies were not different when compared to reference range. In serological analysis, Glucose, ALP and inorganic phosphate level of four cloned puppies was significantly higher than the reference ranges. However, there was no significant difference among four cloned dogs. This study suggests that cloned puppies derived from SCNT did not have remarkable health problems, at least in the growth pattern and hematological and serological parameters.

Characterizations of Cell Lineage Markers in the Bone Marrow Cells of Recloned GFP Pigs for Possible Use of Stem Cell Population

  • Park, Kwang-Wook;Choi, Sung-Sik;Lee, Dong-Ho;Lee, Hwang;Choi, Seung-Kyu;Park, Chang-Sik;Lee, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • Two piglets and one juvenile pig were used to investigate closely what types of cells express green fluorescent protein (GFP) and if any, whether the GFP-tagged cells could be used for stem cell transplantation research as a middle-sized animal model in bone marrow cells of recloned GFP pigs. Bone marrow cells were recovered from the tibia, and further analyzed with various cell lineage markers to determine which cell lineage is concurrently expressing visible GFP in each individual animal. In the three animals, visible GFP were observed only in proportions of the plated cells immediately after collection, showing 41, 2 and 91% of bone marrow cells in clones #1, 2 and 3, respectively. The intensity of the visible GFP expression was variable even in an individual clone depending on cell sizes and types. The overall intensities of GFP expression were also different among the individual clones from very weak, weak to strong. Upon culture for 14 days in vitro (14DIV), some cell types showed intensive GFP expression throughout the cells; in particular, in cytoskeletons and the nucleus, on the other hand. Others are shown to be diffused GFP expression patterns only in the cytoplasm. Finally, characterization of stem cell lineage markers was carried out only in the clone #3 who showed intensive GFP expression. SSEA-1, SSEA-3, CD34, nestin and GFAP were expressed in proportions of the GFP expressing cells, but not all of them, suggesting that GFP expression occur in various cell lineages. These results indicate that targeted insertion of GFP gene should be pursued as in mouse approach to be useful for stem cell research. Furthermore, cell- or tissue-specific promoter should also be used if GFP pig is going to be meaningful for a model for stem cell transplantation.

Production of Bovine Nuclear Transfer Embryos Using Fibroblasts Transfected with Single-Chain Human Follicle-Stimulating Hormone Gene

  • Yoon, Ji Young;Kwon, Mo Sun;Kang, Jee Hyun;Ahn, Kwang Sung;Kim, So Seob;Kim, Nam-Hyung;Kim, Jin-Hoi;Kim, Teoan;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.168-173
    • /
    • 2009
  • Human follicle-stimulating hormone (hFSH) is a pituitary glycoprotein that regulates follicular development and ovulation. Clinically, hFSH has been used to induce follicular growth in infertile women. The hormone is composed of heterodimers, including a common ${\alpha}$ subunit among the gonadotropin family and a hormone-specific ${\beta}$ subunit. Since assembly of the heterodimer is a rate-limiting step in the production of functional hFSH, transgenic clone cows carrying a single-chain hFSH transgene may efficiently produce functional hormone. Genes encoding the ${\alpha}$ and ${\beta}$ subunits of hFSH were linked using the C-terminal peptide sequence from the ${\beta}$ subunit of human chorionic gonadotropin. Bovine fetal fibroblasts were transfected with the gene construct, including the goat ${\beta}$-casein promoter and a single-chain hFSH coding sequence. Transfected fibroblasts were transferred into enucleated oocytes, and individual nuclear transfer (NT) embryos developed to the blastocyst stage were analyzed for the transgene by polymerase chain reaction. Seventy eight blastocysts (30.8%) were developed from 259 reconstructed embryos. Among these blastocysts, the hFSH gene was detected in 70.8% (34/48) of the embryos. Subsequent transfer of hFSH-transgenic clone embryos to 31 recipients results in 11 (35.5%) early pregnancies. However, all fetuses were lost before reaching day 180 of gestation. The results from this study demonstrated that bovine NT embryos carrying single-chain hFSH could be produced, and further extensive studies in which NT embryos are transferred to more recipients may give rise to single chain hFSH-transgenic cows for biomedical applications.

Mobile transposon-like element, clone MTi7: Finding its role(s) by RNA interference (Mobile transposon-like element, clone MTi7:RNA interference를 이용한 역할 규명)

  • Park, Chang-Eun;Shin, Mi-Ra;Jeon, Eun-Hyun;Cho, Sung-Won;Lee, Sook-Hwan;Kim, Kyung-Jin;Kim, Nam-Hyung;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.4
    • /
    • pp.299-307
    • /
    • 2003
  • Objectives: The present study was conducted to evaluate the mobile transposon-like element, clone MTi7 (MTi7) expression in the mouse ovary and to determine its role(s) in the mouse oocytes by RNA interference (RNAi). Methods: MTi7 mRNA expression was localized by in situ hybridization in day5 and adult ovaries. Double stranded RNA (dsRNA) was prepared for c-mos, a gene with known function as control, and the MTi7. Each dsRNA was microinjected into the germinal vesicle (GV) stage oocytes then oocyte maturation and intracellular changes were evaluated. Results: In situ hybridization analysis revealed that MTi7 mRNA localized to the oocyte cytoplasm from primordial to preovulatory follicles. After dsRNA injection, we found 43-54% GV arrest of microinjected GV oocytes with 68%-90% decrease in targeted c-mos or MTi7 mRNA. Conclusions: This is the first report of the oocyte-specific expression of the MTi7 mRNA. From results of RNAi for MTi7, we concluded that the MTi7 is involved in the germinal vesicle breakdown in GV oocytes, and MTi7 may be implicated with c-mos for its function. We report here that RNAi provides an outstanding approach to study the function of a gene with unknown functions.

Effects of feed intake on the diversity and population density of homoacetogens in the large intestine of pigs

  • Matsui, Hiroki;Mimura, Ayumi;Maekawa, Sakiko;Ban-Tokuda, Tomomi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1907-1913
    • /
    • 2019
  • Objective: Homoacetogens play important roles in the production of acetate in the large intestine of monogastric mammals. However, their diversity in the porcine large intestine is still unknown. Marker gene analysis was performed to assess the effects of energy level on the diversity and population densities of homoacetogens in porcine feces. Methods: Crossbred pigs were fed high or low energy-level diets. The high-intake (HI) diet was sufficient to allow a daily gain of 1.2 kg. The low-intake (LI) diet provided 0.6 times the amount of energy as the HI diet. Genetic diversity was analyzed using formyltetrahydrofolate synthetase gene (FHS) clone libraries derived from fecal DNA samples. FHS DNA copy numbers were quantified using real-time polymerase chain reaction. Results: A wide variety of FHS sequences was recovered from animals in both treatments. No differences in FHS clone libraries between the HI and LI groups were found. During the experimental period, no significant differences in the proportion of FHS copy numbers were observed between the two treatment groups. Conclusion: This is the first reported molecular diversity analysis using specific homoacetogen marker genes from the large intestines of pigs. There was no observable effect of feed intake on acetogen diversity.

Expression, Purification, and Characteristic of Tibetan Sheep Breast Lysozyme Using Pichia pastoris Expression System

  • Li, Jianbo;Jiang, Mingfeng;Wang, Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.574-579
    • /
    • 2014
  • A lysozyme gene from breast of Tibetan sheep was successfully expressed by secretion using a-factor signal sequence in the methylotrophic yeast, Pichia pastoris GS115. An expression yield and specific activity greater than 500 mg/L and 4,000 U/mg was obtained. Results at optimal pH and temperature showed recombinant lysozyme has higher lytic activity at pH 6.5 and $45^{\circ}C$. This study demonstrates the successful expression of recombinant lysozyme using the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, this study shows the feasibility of subsequent industrial manufacture of the enzyme with this expression system together with a high purity scheme for easy high-yield purification.

Factors Involving Reprogramming in Cloned Embryos

  • Kim, N. H;X. S. Cui;Kim, I. H.;Y. M. Han
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.349-357
    • /
    • 2003
  • Although nuclear transfer (NT) techniques are used to clone animals, its efficiency is very low. Moreover, nuclear transfer has resulted in offspring with severe developmental problems, probably due to incomplete nuclear reprogramming. Nuclear reprogramming is characterized by functional modification of the transferred nucleus to allow it to direct normal embryo development with the potential to grow to term. Although the nature of the reprogramming factor(s) in mammals is not clear, various nuclear as well as cytoplasmic components are involved in the processes. In this article we review recent data on factors involved in the nuclear reprogramming of cloned embryos.

Cloning and Expression of Lactate Dehydrogenase H Chain Gene in Adipose Tissues of Korean Cattle

  • Kim, H.H.;Seol, M.B.;Jeon, D.H.;Sun, S.S.;Kim, K.H.;Choi, Y.J.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1670-1674
    • /
    • 2001
  • To understand molecular mechanisms that regulate deposition and release of intramuscular fat, a fasting-induced clone was identified by differential screening from cDNA library of adipose tissues of Korean cattle. The clone had a total length of 1,319 nucleotides coding for 334 amino acids. It was identified as one encoding L-lactate dehydrogenase H chain (LDH-B). Comparison of the deduced amino acid sequences of bovine LDH-B with those of pig, human, rat, and mouse showed 98%, 98%, 97%, and 96% identity, respectively. Food deprivation for 48 h increased mRNA levels of LDH-B gene in adipose tissues of Korean cattle compared to fed- and 6 h refed- tissues. The expression of obese mRNA was examined for individual adipose tissue from several fat depots. Fasting induced expression of LDH-B gene in subcutaneous adipose tissues, but it did not affect expression levels in abdominal, perirenal and intramuscular tissues. Results demonstrate that induction of LDH-B gene during fasting may represent a metabolic shift from anaerobic state to aerobic predominance in fasted adipose tissues and that its responses to fasting are different among several adipose tissues.