• Title/Summary/Keyword: Clip Gage

Search Result 7, Processing Time 0.016 seconds

Design of δ5 Clip Gage for CTOD Measurement (CTOD 측정용 δ5 Clip Gage 설계)

  • Park, Tai-Heoun;Nahm, Seung-Hoon;Kim, Am-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.343-351
    • /
    • 2004
  • The flaw assessment method based on ${delta}_5$ parameter was recently proposed and put to the practical use. However: since it is almost impossible to measure the ${delta}_5$ by the existing commercial clip gager, we need to develope the specially designed gages which are suitable for that purpose. In this research, a double cantilever type ${delta}_5$ clip gage with the traveling distance of 4mm was developed by the finite element analysis and the construction of Wheatstone bridge circuit including strain gages. The linearity of developed ${delta}_5$ clip gage was evaluated by the MTS extensometer calibrator with the proper adapters which allow the 6s clip gage to sit on the calibrator. Consequently, the 6s clip gage revealed the good linearity between the output voltage and the traveling distance of gage.

Design, Construction and Use of a Displacement Cage for M(T) Specimens (중앙균열 피로시험편용 변위게이지의 설계, 제작과 활용)

  • Kim, Jeong-Yeop;Song, Ji-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.415-427
    • /
    • 2002
  • A clip-on type displacement gage was designed and manufactured to use for fatigue crack growth tests of M(T)(Middle-Tension) specimens. The displacement gage has good response for the deformation of the specimen and has been successfully used not only for constant amplitude loading tests but also far variable amplitude loading tests like as single peak overloading and random loading tests. All the materials for the gage can be obtained easily in domestic market, and the manufacturing cost is very low. It is expected that the designing procedure presented in this study can be applied usefully for designing other displacement gages.

A Study on Evaluation of Crack Opening Point in Al 2024-T3 Material (Al 2024-T3재의 Crack Opening Point의 평가에 관한 연구)

  • Choi, Byung-Ki;Jang, Kyeung-Cheun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2004
  • This paper aims to analyze fatigue fracture mechnisms with high strength aluminum alloys, which are widely used in vehicles or airplanes to prevent accidents. Usefulness of the crack opening point was proposed by using an effective stress intensity facor when evaluating the fatigue crack propagaion rate. Therefore an exact crack opening ratio can be measured for a more exact fatigue crack propagation rate. It is found that the fatigue crack propagation rate was valid within the range of experimentation as an effective stress intensity factor. Summarizing the results are as follows in this paper ; (1) It is found that the value of the crack opening ratio is constant at the rear of the specimen, U'=0.25 at the crack mouth and U'=0.45 at the crack tip, respectively regardless of the stress ratio. (2) The crack opening ratio is different according to measurement locations. The crack opening ratio value was measured at the crack mouth by a clip gage or measured behind the specimen by a strain gage. It is found that the crack opening ratio value is more accurate that any other measuring test for evaluating the crack propagation ratio test by effective stress intensity factor.

A Study on Evaluation of Crack Opening Point in High Strength Aluminum Alloy(I) (고강도 알미늄 합금재에 있어서 크랙열림점 평가에 관한 연구(I))

  • 최병기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.100-106
    • /
    • 1993
  • This paper aims to synthesize the research on fatigue fracture mechanisms of high strength aluminum alloys which are widely used in motorcars or airplanes to prevent accidents. To measure the data of crack opening ratio, the same materials and method are used for evaluating the fatigue crack propagation rate as an effective stress intensity factor. But, many researchers have brought different results. An exact crack opening ratio was, therefore, proposed for getting a more accurate fatigue crack propagation rate. The main conclusions obtained are as follows. (1) As a result of the fatigue test, the value of the crack opening ratio is the same regardless of the stress ratio. (2) The value of crack opening ratio is different according to the measuring point. After measuring the crack propagation rate by using an effective stress intensity factor, the crack opening ratio value measured at the crack mouth by a clip gage, or measured rear of the specimen by a strain gage is more accurate than that by any other measuring test.

  • PDF

The Stress -Strain Behavior of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 응력 -변형률 거동)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-82
    • /
    • 1993
  • A series of torsion shear tests were performed to study the drained stress -strain behavior of medium dense Santa Monica Beach sand under various stress paths. The torque was applied to both clockwise and counterclockwise directions at the end of hollow cylinder specimen. Two clip gages had been previously used to measure the changes in wall thickness and diameter of the specimen. In this study, however, the lateral strain was determined by measuring volume changes in specimen. Specimens were prepared by the air pluviation method and gaseous carbon deozide( CO2) was used to measure precisely volumetric strain in specimen. The drained stress -strain behavior of cohesionless Boils during rotation of principal stress directions was analysed based on the results of torsion shear tests. The coupling of mal stress were applied. It was also found from the test results that the atrial strain at failure decreased with increasing value.

  • PDF

Effect of Specimen Thickness on Fatigue Crack Growth (피로균열진전에 미치는 시편 두께의 영향)

  • 김재훈;김영균;윤인수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 1998
  • The effect of specimen thickness on fatigue crack growth behavior has been carried out by compact tension specimens of thickness of 3mm, 10mm and 25mm for maraging steel and Al 7075-T6. The closure points were determined during the test by means of a clip-gage situated at the notch mouth. Specimen thickness have no apparent influence on the fatigue crack growth rate of maraging steel, but the crack growth rate of 25mm thickness specimen for Al 7075-T6 is faster than that of 3 and 10mm specimens. The difference of crack growth rates can be successfully explained by considering the different stress state of plane strain and plain stress due to the variation of specimen thickness. Also the crack opening ratio of 25mm specimen is greater than those of 3 and 10mm specimens. When a side groove is introduced in a 10mm specimen, the crack growth rate is approximately similar to that of 25mm specimen. The effective thickness expression of $B_e=B_o-(B_o-B_N)^2B_o$ is the most appropriate to evaluate the crack growth rate of side-grooved specimen. Fatigue crack growth rates can be well described by $\Delta K_{eff}$ of the crack closure points in regardless of all thickness and side-grooved specimens.

  • PDF

A study of Fatigue Crack Growth Behavior and Crack Closure in 5083-O Aluminum Alloy (5083-0 알루미늄合金의 疲勞균열進展 擧動과 균열닫힘에 관한 硏究)

  • 박영조;김정규;김일현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.208-214
    • /
    • 1986
  • To establish the evaluation of the fatigue crack growth behavior in 5083-O aluminum alloy, constant load-amplitude fatigue crack growth tests were carried out under the small scale yielding conditions. Crack length and closure of this material were measured by the compliance method using a clip-on gage. The main results obtained as follows: The fatigue crack growth rate against stress intensity factor range .DELTA.K exhibits the trilinear form with two transitions at the growth rate 5.5*10$^{-6}$ and 5.5*10$^{-5}$ mm/cycle, in the so-caled Region II. The trilinear form appears still in the plot of growth rate versus effective stress intensity factor range .DELTA. $K_{eff}$. Stress ratio R affects the relationship of crack growth rates versus .DELTA.K but does not affect the reation of crack growth rate versus .DELTA. $K_{eff}$. The experimental results indicate that the effective stress intensity range ratio U depends on the maximum stress intensity factor $K_{max}$, but not on the stress ratio R.o R.R.