• Title/Summary/Keyword: Clinical pathways

Search Result 398, Processing Time 0.026 seconds

Mitochondrial dysfunction and Alzheimer's disease: prospects for therapeutic intervention

  • Lim, Ji Woong;Lee, Jiyoun;Pae, Ae Nim
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.47-55
    • /
    • 2020
  • Alzheimer's disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research.

Novel biological strategies to enhance the radiation therapeutic ratio

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.172-181
    • /
    • 2018
  • Successful anticancer strategies require a differential response between tumor and normal tissue (i.e., a therapeutic ratio). In fact, improving the effectiveness of a cancer therapeutic is of no clinical value in the absence of a significant increase in the differential response between tumor and normal tissue. Although radiation dose escalation with the use of intensity modulated radiation therapy has permitted the maximum tolerable dose for most locally advanced cancers, improvements in tumor control without damaging normal adjacent tissues are needed. As a means of increasing the therapeutic ratio, several new approaches are under development. Drugs targeting signal transduction pathways in cancer progression and more recently, immunotherapeutics targeting specific immune cell subsets have entered the clinic with promising early results. Radiobiological research is underway to address pressing questions as to the dose per fraction, irradiated tumor volume and time sequence of the drug administration. To exploit these exciting novel strategies, a better understanding is needed of the cellular and molecular pathways responsible for both cancer and normal tissue and organ response, including the role of radiation-induced accelerated senescence. This review will highlight the current understanding of promising biologically targeted therapies to enhance the radiation therapeutic ratio.

2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells

  • Wong, Teck Yew;Menaga, Subramaniam;Huang, Chi-Ying F.;Ho, Siong Hock Anthony;Gan, Seng Chiew;Lim, Yang Mooi
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2022
  • 2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor κB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.

Changes in Human Gene Expression After Sleep Deprivation

  • Sun, Je Young;Kim, Jong Woo;Yim, Sung-Vin;Oh, Miae;Kang, Won Sub
    • Korean Journal of Biological Psychiatry
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Objectives Sleep is fundamental to maintaining homeostatic control and has behavioral and psychological effects on humans. To better understand the function and pathophysiology of sleep, specific gene expressions in reference to sleep deprivation have been studied. In this study, we investigated the gene expression of peripheral blood mononuclear cells after sleep deprivation to better understand the functional consequence of sleep. Methods In eight healthy men, 24 h sleep deprivation was induced. Blood was sampled at 14:00, before and after sleep deprivation. mRNA was isolated and analyzed via microarrays. cDNAs before and after sleep deprivation were coupled to Cy3 or Cy5, respectively, and normalized cDNAs were selected with a ratio greater than two as a significant gene. Results are expressed as mean. Results Among 41174 transcripts, 38852 genes were selected as reliable, and only a small minority (< 1%) of the genes were up-or down-regulated. Total six and eleven genes were selected as significant upregulated and downregulated genes, respectively. Protein tyrosine phosphatase receptor type O was most upregulated (6.9-fold), and low-density lipoprotein receptor-related protein 5-like protein showed the most substantial inhibition (0.06-fold). Conclusions This study showed significant associations between sleep deprivation and the immune system. Acute sleep deprivation affects pathways in proinflammatory cytokines as well as metabolic pathways of glutamate and purine, neurotransmitters related to sleep and wake cycle.

Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder

  • Soojung, Yoon;Hamid, Iqbal;Sun Mi, Kim;Mirim, Jin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.

Outcomes of Critical Pathway in Laparoscopic and Open Surgical Treatments for Gastric Cancer Patients: Patients Selection for Fast-Track Program through Retrospective Analysis

  • Choi, Ji Woo;Xuan, Yi;Hur, Hoon;Byun, Cheul Su;Han, Sang-Uk;Cho, Yong Kwan
    • Journal of Gastric Cancer
    • /
    • v.13 no.2
    • /
    • pp.98-105
    • /
    • 2013
  • Purpose: The aim of this study is to investigate the clinical factors affecting on the cure rate by invasive and open surgery for gastric cancer and to establish a subgroup of patients who can be applied by the early recovery after surgery program through this retrospective analysis. Materials and Methods: In this retrospective study, we analyzed 425 patients who underwent gastric cancer surgery between January 2011 and December 2011 and were managed with conventional clinical therapies. This clinical algorithm was made when the patient was in minimally invasive surgery group and discharged from hospital one day faster than them in open surgery group. Results: The completion rate of the clinical pathway was 62.4%. Despite the different applications of clinical pathway, completion rate in minimally invasive surgery group was significantly higher than that of open group (P<0.001). In multivariate analysis, the surgical procedure of minimally invasive surgery (odds ratio=4.281) was the most predictable factor to complete clinical pathway. Additionally, younger patients (odds ratio=1.933) who underwent distal gastrectomy (odds ratio=1.999) without combined resection (odds ratio=3.069) were predicted to accomplish the clinical pathway without any modifications. Conclusions: We concluded that high efficacy of the clinical pathway for gastric cancer surgery was expected to selected patients through retrospective analysis (expected completion rate=85.4%). In addition, these patients would become enrolled criteria for early recovery program in gastric cancer surgery.

A Prospective Case Series Protocol for Clinical Pathway of Carpal Tunnel Syndrome (손목터널증후군의 한의표준임상경로 임상시험 프로토콜)

  • Park, Hye-Jin;Kim, Hyun-Tae;Park, Sun-Young;Heo, In;Hwang, Man-Suk;Shin, Byung-Cheul;Hwang, Eui-Hyoung
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.32 no.4
    • /
    • pp.73-82
    • /
    • 2022
  • Objectives The purpose of this study is to develop a case study protocol to complete final version of Korean medicine clinical pathway (CP) by applying Korean medicine CP based on carpal tunnel syndrome Korean medicine clinical practice guidelines developed by clinical experts to clinical field. Methods After applying previously developed CP, 10-point Likert scale questionnaires on satisfaction of CP, appropriateness and improvement on out patient department (OPD) treatments are carried out in the 2nd week of OPD treatment. An open-ended questionnaire is also carried out to ask if there is any requirement to be added or improved among CP interventions. Results Final version of CP is going to be completed based on the questionnaire, excluding articles of which average or median value is less than 5 from 10-point Likert scale. Conclusions This evidence-based case study protocol is expected to contribute development of carpal tunnel syndrome clinical pathway.

Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease

  • Seung Ah Choi;Youn Joo Moon;Eun Jung Koh;Ji Hoon Phi;Ji Yeoun Lee;Kyung Hyun Kim;Seung-Ki Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.642-651
    • /
    • 2023
  • Objective : Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. Methods : ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. Results : The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. Conclusion : Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.

Current insights into inherited bone marrow failure syndromes

  • Chung, Nack-Gyun;Kim, Myungshin
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.8
    • /
    • pp.337-344
    • /
    • 2014
  • Inherited bone marrow failure syndrome (IBMFS) encompasses a heterogeneous and complex group of genetic disorders characterized by physical malformations, insufficient blood cell production, and increased risk of malignancies. They often have substantial phenotype overlap, and therefore, genotyping is often a critical means of establishing a diagnosis. Current advances in the field of IBMFSs have identified multiple genes associated with IBMFSs and their pathways: genes involved in ribosome biogenesis, such as those associated with Diamond-Blackfan anemia and Shwachman-Diamond syndrome; genes involved in telomere maintenance, such as dyskeratosis congenita genes; genes encoding neutrophil elastase or neutrophil adhesion and mobility associated with severe congenital neutropenia; and genes involved in DNA recombination repair, such as those associated with Fanconi anemia. Early and adequate genetic diagnosis is required for proper management and follow-up in clinical practice. Recent advances using new molecular technologies, including next generation sequencing (NGS), have helped identify new candidate genes associated with the development of bone marrow failure. Targeted NGS using panels of large numbers of genes is rapidly gaining potential for use as a cost-effective diagnostic tool for the identification of mutations in newly diagnosed patients. In this review, we have described recent insights into IBMFS and how they are advancing our understanding of the disease's pathophysiology; we have also discussed the possible implications they will have in clinical practice for Korean patients.

Roles of Bile Acid as an Active Biological Substance (담즙산의 생체 활성 물질로서의 역할)

  • Bang, Joon-Seok;Lee, Yu-Jeung;Jeong, Ji-Hoon;Sohn, Uy-Dong
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • The family of bile acids belongs to a group of molecular species of acidic steroids with very peculiar biological characteristics. They are synthesized by the liver from cholesterol through several complementary pathways and secreted into small intestine for the participation in the digestion and absorption of fat. The bile acids are mostly confined to the territories of the so-called enterohepatic circulation, which includes the liver, the biliary tree, the intestine and the portal blood with which bile acids are returned to the liver. In patients with bile acid malabsorption, the amount of primary bile acids in the colon is increased compared to healthy controls. Although the increase in the secondary bile acids including deoxycholic acid, is reported to have the potency to affect tumorigenesis in gastrointestinal tracts, there is no firm evidence that clinically relevant concentrations of the bile acids induce cancer. The list of their physiological roles, as well as that of the pathological processes is long and still not complete. There is no doubt that many new concepts, pharmaceutical tools and pharmacological uses of bile acids and their derivatives will emerge in the near future.