• Title/Summary/Keyword: Clinical CT

Search Result 1,836, Processing Time 0.029 seconds

A Study on the Indirect Radiation Exposure of the Medical Personnel Who is Responsible for Patient Safety in CT Examination (전산화단층촬영검사 시 검사실 내에 위치할 수 있는 의료인의 간접 피폭선량에 대한 연구)

  • Choi, Min-Hyeok;Jang, Ji-Sung;Lee, Ki-Baek
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.105-111
    • /
    • 2019
  • A medical personnel could be placed beside a patient together in CT room to do Ambu-bag for a seriously ill patients or emergency patient. At this time, the medical personnel can be exposed indirect radiation unnecessarily. In this case, it is necessary to recognize indirect radiation dose levels and methods to reduce them using actual clinical CT protocols such as Chest, Abdomen, and Brain CT. We researched surface radiation dose with or without radiation protectors such as apron and goggles according to different distances far from gantry using two different CT scanners (Fixed MDCT and mobile CT). As a result, for Chest, Abdomen, and Brain CT with Fixed MDCT, indirect radiation dose on thorax portion were 0.047, 0.089, 0.034 mSv without apron. Also, those with apron were 0.007, 0.012, 0.006 mSv. In case of mobile CT, it was 0.014 mSv without apron and 0.005 mSv with apron. By using protectors and increasing the distance, we could reduce it to 97%. Systematic management is necessary based on the measured data in order to minimize radiation damage due to indirect exposure dose.

Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method

  • Pamela Sung;Jeong Min Lee;Ijin Joo;Sanghyup Lee;Tae-Hyung Kim;Balaji Ganeshan
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.558-568
    • /
    • 2019
  • Objective: To evaluate whether computed tomography (CT) reconstruction algorithms affect the CT texture features of the liver parenchyma. Materials and Methods: This retrospective study comprised 58 patients (normal liver, n = 34; chronic liver disease [CLD], n = 24) who underwent liver CT scans using a single CT scanner. All CT images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR) (iDOSE4), and model-based IR (IMR). On arterial phase (AP) and portal venous phase (PVP) CT imaging, quantitative texture analysis of the liver parenchyma using a single-slice region of interest was performed at the level of the hepatic hilum using a filtration-histogram statistic-based method with different filter values. Texture features were compared among the three reconstruction methods and between normal livers and those from CLD patients. Additionally, we evaluated the inter- and intra-observer reliability of the CT texture analysis by calculating intraclass correlation coefficients (ICCs). Results: IR techniques affect various CT texture features of the liver parenchyma. In particular, model-based IR frequently showed significant differences compared to FBP or hybrid IR on both AP and PVP CT imaging. Significant variation in entropy was observed between the three reconstruction algorithms on PVP imaging (p < 0.05). Comparison between normal livers and those from CLD patients revealed that AP images depend more strongly on the reconstruction method used than PVP images. For both inter- and intra-observer reliability, ICCs were acceptable (> 0.75) for CT imaging without filtration. Conclusion: CT texture features of the liver parenchyma evaluated using the filtration-histogram method were significantly affected by the CT reconstruction algorithm used.

Utility of Brain Computed Tomography in Detecting Fractures of the Temporal Bones Correlated with Patterns of Fracture on High-Resolution Computed Tomography (고해상도 전산화 단층촬영에서 확인된 골절 유형에 따른 측두골 골절의 진단에서 뇌전산화 단층촬영의 유용성)

  • Kwon, Bong-Seok;Shin, Dong-Hyuk;Choi, Pil-Cho;Han, Sang-Kuk;Lee, Jeong-Hun;Song, Hyoung-Gon
    • Journal of Trauma and Injury
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • Purpose: The clinical utility of brain computed tomography (CT) in detecting temporal bone fracture is not well established. We performed this study to determine the utility of brain computed tomography (CT) in detecting fractures of the temporal bones in correlation with fracture patterns. We used high resolution computed tomography (HRCT) as the gold standard for diagnosing temporal bone fracture and its pattern. Methods: From January 2007 to December 2009, patients who underwent both brain CT and HRCT within 10 days of head trauma were investigated. Among them, 58 cases of temporal bone fracture confirmed by HRCT were finally included. Fracture patterns (transverse or non-transverse, otic capsule sparing or otic capsule violating) were determined by HRCT. Brain CT findings in correlation with fracture patterns were analyzed. Results: Among 58 confirmed cases of temporal bone fracture by HRCT, 14 cases (24.1%) were not detected by brain CT. Brain CT showed a significantly lower ability to detect temporal bone fracture with transverse component than without transverse component (p=0.020). Moreover, brain CT showed lower ability to detect otic capsule violating pattern than otic capsule sparing pattern (p=0.015). Among the 14 cases of temporal bone fracture that were not detected by brain CT, 4 cases lacked any objective physical findings (facial palsy, hemotympanum, external auditory canal bleeding) suggesting fractures of the temporal bones. Conclusion: Brain CT showed poor ability to detect temporal bone fracture with transverse component and otic capsule violating pattern, which is associated with a poorer clinical outcome than otic capsule sparing pattern. Routine use of HRCT to identify temporal bone fracture is warranted, even in cases without evidence of temporal bone fracture on brain CT scans or any objective physical findings suggestive of temporal bone fracture.

Clinical Apply of Dual Energy CT (kVp switching) : A Novel Approach for MAR(Metal Artifact Reduction) Method (듀얼에너지 CT(kvp switching)의 임상 적용: MAR(Metal Artifact Reduction) 알고리즘의 적용)

  • Kim, Myeong-Seong;Jeong, Jong-Seong;Kim, Myeong-Goo
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.79-85
    • /
    • 2011
  • OThe purpose of this article was to measure and compare the value of the metal artifact reduction (MAR) algorithm by Dual energy(kVp switching) CT (Computed Tomography) for non using MAR and we introduced new variable Dual energy CT applications through a clinical scan. The used equipment was GE Discovery 750HD with Dual-Energy system(kVp switching). CT scan was performed on the neck and abdomen area subject for patients. Studies were from Dec 20 2010 to Feb 10 2011 and included 25 subject patients with prosthesis. We were measured the HU (Hounsfield Unit) and noise value at metal artifact appear(focal loss of signal and white streak artifact area) according to the using MAR algorithm. Statistical analyses were performed using the paired sample t-test. In patient subject case, the statistical difference of showing HU was p=0.01 and p=0.04 respectively. At maximum black hole artifact area and white streak artifact area according to the using MAR algorithm. However noise was p=0.05 and p=0.04 respectively; and not the affected black hole and white streak artifact area. Dual Energy CT with the MAR algorithm technique is useful reduce metal artifacts and could improve the diagnostic value in the diagnostic image evaluation of metallic implants area.

Development and Validation of 18F-FDG PET/CT-Based Multivariable Clinical Prediction Models for the Identification of Malignancy-Associated Hemophagocytic Lymphohistiocytosis

  • Xu Yang;Xia Lu;Jun Liu;Ying Kan;Wei Wang;Shuxin Zhang;Lei Liu;Jixia Li;Jigang Yang
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.466-478
    • /
    • 2022
  • Objective: 18F-fluorodeoxyglucose (FDG) PET/CT is often used for detecting malignancy in patients with newly diagnosed hemophagocytic lymphohistiocytosis (HLH), with acceptable sensitivity but relatively low specificity. The aim of this study was to improve the diagnostic ability of 18F-FDG PET/CT in identifying malignancy in patients with HLH by combining 18F-FDG PET/CT and clinical parameters. Materials and Methods: Ninety-seven patients (age ≥ 14 years) with secondary HLH were retrospectively reviewed and divided into the derivation (n = 71) and validation (n = 26) cohorts according to admission time. In the derivation cohort, 22 patients had malignancy-associated HLH (M-HLH) and 49 patients had non-malignancy-associated HLH (NM-HLH). Data on pretreatment 18F-FDG PET/CT and laboratory results were collected. The variables were analyzed using the Mann-Whitney U test or Pearson's chi-square test, and a nomogram for predicting M-HLH was constructed using multivariable binary logistic regression. The predictors were also ranked using decision-tree analysis. The nomogram and decision tree were validated in the validation cohort (10 patients with M-HLH and 16 patients with NM-HLH). Results: The ratio of the maximal standardized uptake value (SUVmax) of the lymph nodes to that of the mediastinum, the ratio of the SUVmax of bone lesions or bone marrow to that of the mediastinum, and age were selected for constructing the model. The nomogram showed good performance in predicting M-HLH in the validation cohort, with an area under the receiver operating characteristic curve of 0.875 (95% confidence interval, 0.686-0.971). At an appropriate cutoff value, the sensitivity and specificity for identifying M-HLH were 90% (9/10) and 68.8% (11/16), respectively. The decision tree integrating the same variables showed 70% (7/10) sensitivity and 93.8% (15/16) specificity for identifying M-HLH. In comparison, visual analysis of 18F-FDG PET/CT images demonstrated 100% (10/10) sensitivity and 12.5% (2/16) specificity. Conclusion: 18F-FDG PET/CT may be a practical technique for identifying M-HLH. The model constructed using 18F-FDG PET/CT features and age was able to detect malignancy with better accuracy than visual analysis of 18F-FDG PET/CT images.

Role of $^{18}F$-fluorodeoxyglucose PET/CT in Recurrent Ovary Cancer (재발 난소암의 진단에서의 $^{18}F$-fluorodeoxyglucose PET/CT의 유용성: Enhanced CT와 Tumor Marker CA 125와의 비교)

  • O, Joo-Hyun;Yoo, Ie-Ryung;Choi, Woo-Hee;Lee, Won-Hyoung;Kim, Sung-Hoon;Chung, Soo-Kyo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.3
    • /
    • pp.209-217
    • /
    • 2008
  • Purpose: To date, anatomical imaging modalities of the pelvis and tumor markers have been the mainstay of surveillance for recurrent ovary cancer. This study aimed to assess the role of $^{18}F$-FDG PET/CT in evaluation of ovary cancer recurrences, especially in comparison with enhanced a and tumor marker CA 125. Materials and methods: 73 patients who had PET/CT scan for restaging of confirmed ovary cancer, and additional imaging with enhanced a of the pelvis within one month were included. CA 125 level was available in all patients. From the PET/CT images, maximum standard uptake values (SUVmax) of suspected recurrence sites were recorded. Confirmation was available through re-operation or biopsy in 26 cases, and clinical assessment with series of follow-up images in 47. Results: PET/CT had 93% sensitivity and 88% specificity for detecting recurrent ovary cancer. Enhanced a of pelvis had sensitivity and specificity of 83% and 88%, and CA 125 50% and 95%. Conclusion: PET/CT has higher sensitivity for detecting recurrent ovary cancer compared to enhanced a though the differences were not significant. PET/CT has significantly higher sensitivity than CA 125. However, the three tests all agreed in only 43% of the recurrence cases, and recurrence should be suspected when any of the tests, especially PET/CT, show positive findings.

Noise Measurement by Percentage of Effective Linear Attenuation Coefficient of Water in CT Image of AAPM CT Performance Phantom (AAPM CT 성능 팬텀의 CT영상에서 물 유효선감쇠계수의 백분율에 의한 노이즈 측정)

  • Jong-Eon, Kim;Sang-Hun, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.771-778
    • /
    • 2022
  • The purpose of this study is to present a method of measuring noise by the percentage of effective line attenuation coefficient of water that can be used for quality control of CT image noise using AAPM CT performance phantom in clinical practice. In the CT images obtained by scanning the AAPM CT performance phantom with a 120 kVp CT X-ray beam, the mean CT number was measured for each pin and water in the CT number linearity insert part. The effective energy was determined as the photon energy with the largest correlation coefficient from the correlation coefficients of the linear regression analysis of the measured mean CT number for each pin and water and the linear attenuation coefficient for each photon energy. And for water and acrylic, the contrast scale was calculated as 0.000188 cm-1 · HU-1 from the measured mean CT number and effective line attenuation coefficient. Using the calculated contrast scale, the effective line attenuation coefficient of water, and the standard deviation measured in the water of the alignment pin part of the AAPM CT performance phantom, The noise measurement value by the percentage of effective line attenuation coefficient of water obtained 0.31 ~ 0.52% in the range of 100 ~ 300 mAs.

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Value of Repeat Brain Computed Tomography in Children with Traumatic Brain Injury (소아 두부외상 환자에서의 반복적인 두부 CT 검사의 유용성)

  • Jo, Ho jun;Lim, Yong Su;Kim, Jin Joo;Cho, Jin Seong;Hyun, Sung Youl;Yang, Hyuk Jun;Lee, Gun
    • Journal of Trauma and Injury
    • /
    • v.28 no.3
    • /
    • pp.149-157
    • /
    • 2015
  • Purpose: Traumatic brain injury (TBI) is the most common cause of pediatric trauma patients came to the emergency department. Without guidelines, many of these children underwent repeat brain computed tomography (CT). The purpose of this study was to evaluate the value of repeat brain CT in children with TBI. Methods: We conducted a retrospective study of TBI in children younger than 19 years of age who visited the emergency department (ED) from January 2011 to December 2012. According to the Glasgow Coma Scale (GCS) and Pediatric Glasgow Coma Scale score of the patients, study population divided in three groups. Clinical data collected included age, mechanism of injury, type of TBI, and outcome. Results: A Total 83 children with TBI received repeat brain CT. There were no need for neurosurgical intervention in mild TBI (GCS score 13-15) group who underwent routine repeat CT. 4 patients of mild TBI group, received repeat brain CT due to neurological deterioration, and one patient underwent neurosurgical intervention. Routine repeat CT identified 12 patients with radiographic progression. One patient underwent neurosurgical intervention based on the second brain CT finding, who belonged to the moderate TBI (GCS score 9-12) group. Conclusion: Our study showed that children with mild TBI can be observed without repeat brain CT when there is no evidence of neurologic deterioration. Further study is needed for establish indication for repetition of CT scan in order to avoid unnecessary radiation exposure of children.

  • PDF

Optimization of Brain Computed Tomography Protocols to Radiation Dose Reduction (뇌전산화단층검사에서 방사선량 저감을 위한 최적화 프로토콜 연구)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.116-123
    • /
    • 2018
  • This study is a model experimental study using a phantom to propose an optimized brain CT scan protocol that can reduce the radiation dose of a patient and remain quality of image. We investigate the CT scan parameters of brain CT in clinical medical institutions and to measure the important parameters that determine the quality of CT images. We used 52 multislice spiral CT (SOMATOM Definition AS+, Siemens Healthcare, Germany). The scan parameters were tube voltage (kVp), tube current (mAs), scan time, slice thickness, pitch, and scan field of view (SFOV) directly related to the patient's exposure dose. The CT dose indicators were CTDIvol and DLP. The CT images were obtained while increasing the imaging conditions constantly from the phantom limit value (Q1) to the maximum value (Q4) for AAPM CT performance evaluation. And statistics analyzed with Pearson's correlation coefficients. The result of tube voltage that the increase in tube voltage proportionally increases the variation range of the CT number. And similar results were obtained in the qualitative evaluation of the CT image compared to the tube voltage of 120 kVp, which was applied clinically at 100 kVp. Also, the scan conditions were appropriate in the tube current range of 250 mAs to 350 mAs when the tube voltage was 100 kVp. Therefore, by applying the proposed brain CT scanning parameters can be reduced the radiation dose of the patient while maintaining quality of image.