• 제목/요약/키워드: Climatological study

검색결과 161건 처리시간 0.023초

충남 천안 구룡천 하류부 안골유역의 최종빙기 이후 사면물질이동 (Mass-Movement of Slope Material Since the Last Glacial Period at Angol Basin within Downstream Area of Gurongcheon in Cheonan, Choongnam Province)

  • 박지훈;박경
    • 한국지형학회지
    • /
    • 제17권3호
    • /
    • pp.31-47
    • /
    • 2010
  • 구룡천 하류의 안골유역에 있어서 최종빙기 이후 유역을 구성하고 있는 구릉사면에서 기원한 사면물질이동의 이력을 구명하였다. 이를 위하여 층상해석·층서해석, 탄소연대측정, 입도분석, 대자율분석 및 안골유역의 지형분석을 실시하였다. 약 40,480~9,850yrBP에 걸쳐서 안골유역의 구릉사면에서 유역의 곡저로 이동·퇴적된 사면기원 무기물층의 사면물질이동은 최소 5회가 존재했으며, 약 9,850yrBP~현재까지 조사유역에서 발생한 사면물질이동은 적어도 4회가 있었다. 퇴적상 연구결과는 대자율 분석과 입도분석의 결과와도 조화롭게 나타나고 있다. 본 연구의 결과는 향후 천안 일대 소유역에 있어서 구릉사면의 삭박과정 및 최종빙기 이후 기후변화 복원에 유용한 자료가 될 것이며 나아가 우리나라 다른 지역연구를 위한 유용한 사례연구가 될 것이다.

돼지 사체에 출현하는 곤충상의 천이에 대한 연구 (A Study on the Arthropod Succession in Exposed Pig Carrion)

  • 정재봉;윤명희
    • 생명과학회지
    • /
    • 제18권10호
    • /
    • pp.1400-1409
    • /
    • 2008
  • 본 연구는 집돼지 사체주위에서 채집되는 곤충의 천이패턴을 이용해서 사체의 사후경과시간을 추정하기 위한, 법의학적 증거모델을 제시하고자 수행되었다. 사체의 주변에서 총 7목28과 48종의 곤충이 채집되었는데, 계절에 따라 많이 나타나는 곤충이 변하여 3월, 5월 및 10월에는 검정파리과가, 7월에는 검정파리과와 반날개과가 같은 비율로, 9월에는 반날개과가 많이 관찰되었다. 검정파리과 곤충은 모든 실험을 통해서 사체에 가장 먼저 도착하는 곤충이며 또한, 부패초기의 지표곤충임이 밝혀졌다. 그러나 부패후기의 지표곤충은 3월을 제외한 나머지 연구기간 중에는 반날개과, 3월에는 집파리과였는데, 3월에는 낮은 온도로 인해서 사체 부패 기간이 오랫동안 지속되었으므로 사체 주위에 모여든 집파리과의 개체수도 증가한 것으로 생각되었다. 이상으로부터 사체의 사후경과시간을 유추하기 위해서는 사체의 부패 정도나 사체 주변에 나타나는 곤충 뿐 아니라, 조사 지역의 기후 조건도 고려해야 할것으로 생각되었다.

접합대순환모형의 초기조건 생산방법에 따른 북반구 겨울철 기온과 해수면 온도의 계절 예측성 비교 연구 (Comparative Study on the Seasonal Predictability Dependency of Boreal Winter 2m Temperature and Sea Surface Temperature on CGCM Initial Conditions)

  • 안중배;이준리
    • 대기
    • /
    • 제25권2호
    • /
    • pp.353-366
    • /
    • 2015
  • The impact of land and ocean initial condition on coupled general circulation model seasonal predictability is assessed in this study. The CGCM used here is Pusan National University Couple General Circulation Model (PNU CGCM). The seasonal predictability of the surface air temperature and ocean potential temperature for boreal winter are evaluated with 4 different experiments which are combinations of 2 types of land initial conditions (AMI and CMI) and 2 types of ocean initial conditions (DA and noDA). EXP1 is the experiment using climatological land initial condition and ocean initial condition to which the data assimilation technique is not applied. EXP2 is same with EXP1 but used ocean data assimilation applied ocean initial condition. EXP3 is same with EXP1 but AMIP-type land initial condition is used for this experiment. EXP4 is the experiment using the AMIP-type land initial condition and data assimilated ocean initial condition. By comparing these 4 experiments, it is revealed that the impact of data assimilated ocean initial is dominant compared to AMIP-type land initial condition for seasonal predictability of CGCM. The spatial and temporal patterns of EXP2 and EXP4 to which the data assimilation technique is applied were improved compared to the others (EXP1 and EXP3) in boreal winter 2m temperature and sea surface temperature prediction.

위성 해색자료에서 추정한 동중국해 클로로필 선형경향의 계절별 차이 (Seasonal Difference in Linear Trends of Satellite-derived Chlorophyll-a in the East China Sea)

  • 손영백;장찬주;김상현
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.147-155
    • /
    • 2013
  • The purpose of this study is to investigate seasonal difference in linear trends in satellite-derived chlorophyll-a concentration (Chl-a) and their related environmental changes in the South Sea of Korea (SSK) and East China Sea (ECS) for recent 15 years (Jan. 1998~Dec. 2012) by analyzing climatological data of Chl-a, Rrs(555), sea surface wind (SSW) and nutrient. A linear trend analysis of Chl-a data reveals that, during recent 15 years, the spring bloom was enhanced in most of the ECS, while summer and fall blooms were weakened. The increased spring (Mar. - May) Chl-a was associated with strengthened winter (Dec. - Feb.) wind that probably provided more nutrient into the upper ocean from the deep. The causes of decreased summer (Jun. - Aug.) Chl-a in the northern ECS were uncertain, but seemed to be related with the nutrient limitation. Recently (after 2006), low-salinity Changjiang diluted water in the south of Jeju and the SSK had lower phosphate that caused increase in N/P ratio with Chl-a decrease. The decreased fall (Sep. - Nov.) Chl-a was associated with weakened wind that tends to entrain less nutrient into the upper ocean from the deep. This study suggests that phytoplankton in the ECS differently changes in response to environmental changes depending on season and region.

Modelling land surface temperature using gamma test coupled wavelet neural network

  • Roshni, Thendiyath;Kumari, Nandini;Renji, Remesan;Drisya, Jayakumar
    • Advances in environmental research
    • /
    • 제6권4호
    • /
    • pp.265-279
    • /
    • 2017
  • The climate change has made adverse effects on land surface temperature for many regions of the world. Several climatic studies focused on different downscaling techniques for climatological parameters of different regions. For statistical downscaling of any hydrological parameters, conventional Neural Network Models were used in common. However, it seems that in any modeling study, uncertainty is a vital aspect when making any predictions about the performance. In this paper, Gamma Test is performed to determine the data length selection for training to minimize the uncertainty in model development. Another measure to improve the data quality and model development are wavelet transforms. Hence, Gamma Test with Wavelet decomposed Feedforward Neural Network (GT-WNN) model is developed and tested for downscaled land surface temperature of Patna Urban, Bihar. The results of GT-WNN model are compared with GT-FFNN and conventional Feedforward Neural Network (FFNN) model. The effectiveness of the developed models is illustrated by Root Mean Square Error and Coefficient of Correlation. Results showed that GT-WNN outperformed the GT-FFNN and conventional FFNN in downscaling the land surface temperature. The land surface temperature is forecasted for a period of 2015-2044 with GT-WNN model for Patna Urban in Bihar. In addition, the significance of the probable changes in the land surface temperature is also found through Mann-Kendall (M-K) Test for Summer, Winter, Monsoon and Post Monsoon seasons. Results showed an increasing surface temperature trend for summer and winter seasons and no significant trend for monsoon and post monsoon season over the study area for the period between 2015 and 2044. Overall, the M-K test analysis for the annual data shows an increasing trend in the land surface temperature of Patna Urban.

최근 60년간 도시 및 농촌 지역의 국지적 기후변화 비교 분석 (A Comparison of the Impact of Regional Anthropogenic Climatic Change in Urban and Rural Areas in South Korea (1955-2016))

  • 윤동현;남원호;홍은미;김태곤;허창회
    • 한국농공학회논문집
    • /
    • 제60권3호
    • /
    • pp.37-50
    • /
    • 2018
  • Local climate characteristics for both urban and rural areas can be attributed to multiple factors. Two factors affecting these characteristics include: 1) greenhouse gases related to global warming, and 2) urban heat island (UHI) effects caused by changes in surface land use and energy balances related to rapid urbanization. Because of the unique hydrological and climatological characteristics of cities compared with rural and forested areas, distinguishing the impacts of global warming urbanization is important. In this study, we analyzed anthropogenic climatic changes caused by rapid urbanization. Weather elements (maximum temperature, minimum temperature, and precipitation) over the last 60 years (1955-2016) are compared in urban areas (Seoul, Incheon, Pohang, Daegu, Jeonju, Ulsan, Gwangju, Busan) and rural/forested areas (Gangneung, Chupungnyeong, Mokpo, and Yeosu). Temperature differences between these areas reveal the effects of urbanization and global warming. The findings of this study can be used to analyze and forecast the impacts of climate change and urbanization in other urban and non-urban areas.

부산의 도시기후 변화 경향과 도시화 효과에 관한 연구 (Study on the Climate Change and the Urbanization Effect in Busan)

  • 박명희;이준수;안지숙;서영상;한인성;김해동
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.401-409
    • /
    • 2012
  • This study examines the climatological variability of urban area and the increase of temperature by urbanization using the observed data of Busan and Mokpo during the last 100 years (1910~2010). The results are as follows. First, the maximum temperature in Busan during the last 100 years has increased by $1.5^{\circ}C$ while average temperature and the minimum temperature have increased by $1.6^{\circ}C$ and $2^{\circ}C$. In Mokpo, the maximum temperature and average temperature have increased by $1^{\circ}C$ and the minimum temperature has increased by $0.8^{\circ}C$. The increase of urban temperature appeared to be higher in Busan than in Mokpo by $0.5^{\circ}C{\sim}1.2^{\circ}C$. Second, as for the change in temperature before and after urbanization, the maximum temperature, average temperature and the minimum temperature during last 50 years compared to the previous 50 years have increased about $1.5^{\circ}C$, $1.6^{\circ}C$ and $2.1^{\circ}C$, however, the predicted temperature after removing urbanization effect was estimated to be increased by $1^{\circ}C$. The proportion that urbanization takes on the overall increase of temperature appeared to be 33% at the maximum temperature, 37.5% at average temperature and 52.3% at the minimum temperature, thus the proportion of urbanization appeared to be maximized at the minimum temperature.

자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포 (Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area)

  • 홍제우;홍진규;이성은;이재원
    • 대기
    • /
    • 제23권4호
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.

1993/1994년을 기점으로 나타난 한반도 여름철 강수량 변동의 종관기후학적 원인 (Change of Synoptic Climatology Associated with the Variation of Summer Rainfall Amount over the Korean Peninsula Around 1993/1994)

  • 김재훈;이태영
    • 대기
    • /
    • 제22권4호
    • /
    • pp.401-413
    • /
    • 2012
  • In this study, an investigation has been carried out to understand 1) temporal variation of rainfall amount in summer over south Korea during the 30-year period of 1979-2008 and 2) the relationship between the variation of rainfall amount and the change of large-scale monsoon circulation around 1993/1994 over East Asia. The analysis of rainfall amount is carried out separately for whole summer (June-August), climatological Changma period of 23 June-23 July, and August to consider variations within summer. To relate the variation of rainfall amount with the change of large-scale circulation, we have considered two 15-year periods of 1979-1993 and 1994-2008. This study has used observations at 58 stations in South Korea and NCEP-NCAR $2.5^{\circ}{\times}2.5^{\circ}$ reanalysis data. The major change in synoptic environment for the Changma period is characterized by the intensified anticyclone over Mongolia during 1994-2008, which results in a weak meridional oscillation of Changma front. As a result, rainfall amount for the Changma period and the frequency of extreme events have significantly increased after 1993/1994. A major change of synoptic environment for August is the significant westward extension of the western Pacific subtropical high, which allows not only more moisture transports but also stronger cyclonic circulation over the Korean peninsula. Rainfall amount for August and frequency of extreme events have also increased after 1993/1994. However, variability of rainfall amount is larger for August than that for the Changma period, with some years showing very dry August (monthly rainfall amount less than 150 mm).

여름철 한반도 강수의 시·공간적 특성 연구 (Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula)

  • 인소라;한상옥;임은순;김기훈;심재관
    • 대기
    • /
    • 제24권2호
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.