• Title/Summary/Keyword: Climatological study

Search Result 161, Processing Time 0.029 seconds

Long-term Changes in Wintertime Precipitation and Snowfall over Gangwon Province (강원 지역의 장기 겨울철 강수 및 강설 변화의 경향 분석)

  • Baek, Hee-Jeong;Ahn, Kwangdeuk;Joo, Sangwon;Kim, Yoonjae
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • The effects of recent climate change on hydrological systems could affect the Winter Olympic Games (WOG) because the event is dependent on suitable snow and ice conditions to support elite-level competitions. We investigate the long-term variability and change in winter total precipitation (P), snowfall water equivalent (SFE), and ratios of SFE to P during the period 1973/74~2015/16 in Gangwon province. The climatological percentages of SFE relative to winter total precipitation were 71%, 28%, and 44% in Daegwallyeong, Chuncheon, and Gangneung, respectively. The winter total P, SFE, and SFE/P has decreased (but not significantly), although significant increases of winter maximum and minimum temperature were detected at a 95% confidence level. Notably, a significant negative trend of SFE/P at Daegwallyeong in February, the month of the WOG, was attributable to a larger decrease in SFE related to the increases in maximum and minimum temperature. Winter wet-day minimum temperatures were warmer than climatological minimum temperatures averaged over the study period. The 20-year return values of daily maximum P and SFE decreased in Yongdong area. Since the SFE/P decrease with increasing temperature, the probability of rainfall rather than snowfall can increase if global warming continues.

THE CHANCES OF PERMAFROST INDUCED BY GREENHOUSE WARMING: A SIMULATION STUDY APPLYING MULTIPLE-LAYER GROUND MODEL

  • Yamaguchi, Kazuki;Noda, Akira;Kitoh, Akio
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.329-334
    • /
    • 2001
  • Many of past studies using physically based numerical climate models indicate that increases in atmospheric $CO_2$could enhance summer dryness over continental region in middle-high latitudes. However the models used in those studies do not take account of permafrost in high latitudes. We have carried out a set of experiments applying a version of global climate model that can reproduce realistic distribution of the permafrost. From the results, it is indicated that permafrost functions as a large reservoir in hydrologic cycle maintaining dry, hot summer over continents in northern middle-high latitudes, and that the $CO_2$warming would reduce this function by causing climatological thawing of permafrost, which would result in moister and cooler summer, and warmer winter in the same region. The present study indicates that an inclusion of very simple description of soil freezing process can make a large difference in a model simulation.

  • PDF

A STUDY ON THE ASTRONOMICAL OBSERVATIONAL ENVIRONMENTS AT THE CHOEJUNG-SAN GEODSS SITE: II. METEOROLOGICAL STUDY (최정산 위성추적소의 천체관측 환경에 관한 조사 연구: II. 천문 관측환경에 대한 기상학적 연구)

  • Yun, Il-Hui;An, Byeong-Ho;Kang, Yong-Hui;Yun, Tae-Seok
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.197-220
    • /
    • 1996
  • The climatological characteristics at the Choejung-san site were statistically analyzed using monthly normals for the various meteorological elements at Taegu meteorological station for 30 years from January 1960 to December 1990. Various synoptic weather conditions were classified by the estimated geostrophic wind speeds and direction determined using the 850 hPa geopotential height field for 10 years from December 1980 to November 1989. Also the analysis of number of clear days were monthly and seasonally performed using the satellite infrared image data which were obtained from GMS 5 for 5 years from December 1990 to November 1995. The results reveal that the meteorological environments of astronomical observation at Choejung-san site were very good conditions during three hours after midnight except for summer season.

  • PDF

The Meteorological Disaster Analysis for the Natural Disaster Mitigation in the Korean Peninsula (자연재해 저감을 위한 한반도 피해 현황 분석)

  • Park, Jong-Kil;Choi, Hyo-Jin;Jung, Woo-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.319-322
    • /
    • 2007
  • This study aims to find the characteristics of damage and states of natural disasters at the Korean Peninsula from 1985 to 2004. Using the data of Statistical yearbook of calamities issued by the National Emergency Management Agency and Annual Climatological Report issued by the Korea Meteorological Administration. we have analyzed the cause, elements, and vulnerable regions for natural disasters. Major causes of natural disaster at Korean Peninsula are four, such as a heavy rain, heavy rain typhoon, typhoon, storm snow, and storm. The frequency of natural disaster is the highest from June to September. The period from December to March also shows high frequency. The total amount of damage is high during the summer season(Jul.-Sept). The period from January to March shows relatively high amount of damage due to storm and storm snow The areas of Gangwon-do, Gyeongsangnam-do and Gyeongsangbuk-do are classified the vulnerable region for the natural disasters. By establishing mitigation plans which fit the type and characteristics of disaster for each region, damage from disaster can be reduced with efficient prevention activities.

  • PDF

On the Characteristics of Damage and States of Natural Disasters for Water Resources Control at Gimhae, Gyeongsangnam-do (김해시 수자원관리를 위한 자연재해 현황과 피해특성분석)

  • Park, Jong-Kil;Choi, Hyo-Jin;Jung, Woo-Sik;Gwon, Tae-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.94-97
    • /
    • 2007
  • This study aims to find the characteristics of damage and states of natural disasters at Gimhae, Gyeongsangnam-do from 1985 to 2004. Using the data of Statistical yearbook of calamities issued by the National Emergency Management Agency and Annual Climatological Report issued by the Korea Meteorological Administration. we have analyzed the cause, elements, and vulnerable regions for natural disasters. Major causes of natural disaster at Gimhae are four, such as a heavy rain, heavy rain typhoon, typhoon, storm snow, and storm. The cause of disaster recorded the most amount of damage is typhoon. The areas of Hallim-myeon, Sangdong-myeon, and Saengnim-myeon are classified the vulnerable region for the natural disasters in Gimhae. Therefore, it seems necessary to build natural disaster mitigation plan each cause of disaster to control water resources and to reduce damage for these areas.

  • PDF

Study on Rainfall Characteristics for the Millimeter-wave Communication Systems-Comparisons of Rainfall rate data from Several observation methods.

  • Chung, H.S.;Song, B.H.;Lee, J.H.;Park, K.M.;Lee, K.A.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.132-134
    • /
    • 1999
  • Rainfall characteristics for designing the optimum millimeter-wave communication systems from two rainfall data set was analyzed. Two rainfall data sets were compared; one-minute rainfall rate data, one-hour synoptic observation data. Each data set has different observation method, sampling frequency. We looked for tendency and quality confluence between two data sets. We showed several results using one-minute rainfall data by millimeter-wave attenuation model. A climatological one-minute rainfall rate data set over Korean Peninsula will be made after data quality control procedure

  • PDF

A Study on the Climatic Characteristics of Korean Coastal Area and Marine Casualties (우리나라 연안역의 기후특성 및 해안에 관한 연구)

  • 윤종휘;이덕수;김세원
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.1
    • /
    • pp.23-30
    • /
    • 1994
  • By use of the Climatological Report(1982~1991) and the Marine Casualty Report(1982`1992), marine casualties caused by meteorological factors and climatic characteristics along Korean coast were analysed. Marine casualty by meteorological factors can be classified into three kinds such as collision, aground and sinking. On the whole collision was mainly caused by dense fog and heavy precipitation, and aground and sinking was caused by strong wind and high sea. As results of analysis of the distribution of wind, fog and precipitation at major ports in Korea, climatic characteristics along Korean coast are as follows. in the eastern coast, wind was relatively weak and fog was not so frequently formed, while strong wind blew all the year round and fog appeared from April to August in Ulleung Island. In the southern coast, the wind was strong in both winter and summer, fog formed frequently in late spring through mid-summer and heavy precipitation was in summer. Typhoon affecting Korea was usually passing this area to the East Sea. In the western coast, strong wind was prevailing in winter at southern region and fog was formed very frequently throughout the year.

  • PDF

The height variation of F2 peak density using Anyang Ionosonde measurements for GNSS ionospheric model

  • Kim, Eo-Jin;Chung, Jong-Kyun;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.3-24.3
    • /
    • 2008
  • The signals transmitted from satellites of Global Navigation Satellite System (GNSS) interact with the plasma of the ionosphere. To study the impact of the ionospheric plasma on GNSS applications a comprehensive knowledge of the ionosphere is required. Especially the correct measurement of the ionosphere such as the peak height of the F2 layer peak electron density (hmF2) is important for the GNSS ionospheric model. Anyang ionosonde station ($37.39^{\circ}N$, $126.95^{\circ}E$) has been operating from October 2000 and the accumulated data for 8 years may allow us to obtain climatological characteristics of middle latitude ionospheric F region for GNSS application. We analyzed the variations of the hmF2 and NmF2 over Anyang station for different conditions of solar activity, geomagnetic activity, season, and local time, and we compared our results with the IRI model.

  • PDF

Surface Observation Probability System of KOMPSAT-3 (다목적실용위성 3호의 지상관측확률에 관한 연구)

  • Park, Myeong-Suk;Heo, Chang-Hoe;Kim, Yeong-Mi;Kim, Eung-Hyeon;Kim, Gyu-Seon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 2006
  • The surface observation probability system (SOPS) of the Korea Multi-Purpose Satellite (KOMPSAT) has been developed based on the climatological distribution of cloud coverage and the expected passage of satellite orbit. While the optical camera loaded on KOMPSAT series has been operated with the purpose of observing earth's surface, it cannot see the surface when an obstacle (i.e., cloud) exists between them. In the present study, cloud information of International Satellite Cloud Climatology Project incorporates into high resolution grid of the KOMPSAT-3 orbit. The characteristics of the KOMPSAT SOPS are discussed.

LOW RESOLUTION RAINFALL ESTIMATIONS FROM PASSIVE MICROWAVE RADIOMETERS

  • Shin, Dong-Bin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.378-381
    • /
    • 2007
  • Analyses of Tropical Rainfall Measuring Mission (TRMM) microwave radiometer (TMI) and precipitation radar (PR) data show that the rainfall inhomogeneity, represented by the coefficient of variation, decreases as rain rate increases at the low resolution (the footprint size of TMI 10 GHz channel). The rainfall inhomogeneity, however, is relatively constant for all rain rates at the high resolution (the footprint size of TMI 37 GHz channel). Consequently, radiometric signatures at lower spatial resolutions are characterized by larger dynamic range and smaller variability than those at higher spatial resolution. Based on the observed characteristics, this study develops a low-resolution (${\sim}40{\times}40$ km) rainfall retrieval algorithm utilizing realistic rainfall distributions in the a-priori databases. The purpose of the low-resolution rainfall algorithm is to make more reliable climatological rainfalls from various microwave sensors, including low-resolution radiometers.

  • PDF