• Title/Summary/Keyword: Climatic Changes

Search Result 319, Processing Time 0.033 seconds

Simulation of the Effects of the A1B Climate Change Scenario on the Potential Yield of Winter Naked Barley in Korea (A1B 기후변화 시나리오가 국내 가을 쌀보리의 잠재수량에 미치는 영향 모사)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Lee, Deog-Bae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Seul-Bi;Kang, Ki-Keong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.192-203
    • /
    • 2011
  • The CERES-Barley crop simulation model was used to assess the impacts of climate change on the potential yield of winter naked barley in Korea. Fifty six sites over the southern part of the Korean Peninsula were selected to compare the climate change impacts in various climatic conditions. Based on the A1B climate change scenarios of Korea, the present climatological normal (1971-2000) and the three future ones (2011-2040, 2041-2070, and 2071-2100) were considered in this study. The three future normals were divided by three environmental conditions with changes in: (1) temperature only, (2) carbon dioxide concentration only, and (3) both temperature and carbon dioxide concentration. The agreement between the observed and simulated outcomes was reasonable with the coefficient of determination of grain yield to be 0.78. We concluded that the CERES-Barley model was suitable for predicting climate change impacts on the potential yield of winter naked barley. The effect of the increased temperature only with the climate change scenario was negative to the potential yield of winter naked barley, which ranges from -34 to -9% for the three future normals. However, the effect of the elevated carbon dioxide concentration only on the potential yield of winter naked barley was positive, ranging from 6 to 31% for the three future normals. For the elevated conditions of both temperature and carbon dioxide concentration, the potential yields increased by 8, 15, and 13% for the 2011-2040, 2041-2070, and 2071-2100 normals, respectively.

Origin, Age and Sedimentation Rate of Mid-Geum River Sediments (금강 중류 하상 퇴적층의 기원과 형성시기 및 퇴적율)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Lim, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • Fluvial sediments are widely distributed in present and old river-beds of the mid-Keum River, the tributaries of which are the Yugu and Jeongan Rivers. The basement of the mid-Keum River area consists of Mesozoic granites which are easily eroded compared to Precambrian gneisses, which are exposed in the upper-Keum River area. The provenance of the fluvial sediments includes both the Precambrian gneisses and Mesozoic granites, which occur in the catchment of the mid-Keum River. The coarse-grained sediments were probably transported from the river-beds and the overbank floodings of the main Keum River and its tributaries when the climate was warm and wet. The oldest mud deposits were dated at ca. 9,400 yr BP by the radiocarbon method. It has been estimated that the sand deposits below the dated muds were formed in a period from the Late Pleistocene to the Early Holocene. However we have revealed that the major part of the present river-bed sediments was formed at ca. 3,000-6,000 yr BP, i.e., in the mid- to late Holocene, when summer monsoon was very strong due to climatic changes. We have calculated fluvial sedimentation rates of 0.12-0.16 cm/yr and 0.02-0.09 cm/yr for borehole KJ-29 river-bed sediments and borehole KJ-28 floodplain deposits, respectively. We conclude that the sedimentation rate is higher near the present stream channel than near the floodplain.

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF

The Promotive Effect of NAA, IBA and Ethychlozate on Rooting Cuttings of Certain Ornamental Plants and Some Physiological Studies. (관상식물 삽목발근에 있어서 NAA, IBA 및 Ethychlozate의 발근촉진효과와 그 생리학적연구)

  • Jeong, Hae-Jun;Gwak, Byeong-Hwa
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.115-198
    • /
    • 1987
  • The present studies were undertaken to elucidate the influence of auxins, auxin-like substance-ethychlozate ("Figaron"),and pH and sort of rooting media on rooted propagation of certainornamental woody plant cuttings, and to see possible changes in internal compositions characterizing after root-promoting treatment as the cutting stage proceeded. The experimental check-up srevealed and summarized as seen in the following;I. Effect of three different auxin treatments on rooting cuttings: 1) Promotive influence of auxin varied according to different concentration levels, hours of dipping treatment of the auxins, and kind of plants. The greatest effect was obtained for Forsythia ksreana with NAA and IBA, for Ligustrurn obtusifolium var. variegatum with NAA and ethychlozate, for Hydrangea macrophylla, Magnolia kobus, and Magnolia liliflora with NAA, lBA and ethychlozate also. The most effective level of the promotive agents was found 200mg/l for NAA, 1000mg/l for IBA, and 200mg/l for ethychlozate. For Weigela florida and Gardenia jasminoides, range of the most effective level was shown relatively wide spread. 2) NAA was more effective at its optimal level of the rooting agent than ethychiozate for Weigela florida, Viburnum awabuki, Forsythia koreana, Acer palmatum 'Nomura', Bouga invillea glabra, Elaeagnus umbellata, Prunus tomentosa, Ligustrum obtusifolium, Pyracantha coccinea, Cestrum noctu rnum, Hydrangea macrophylla, Codiaeum variegatum, Rhododen dron lateritium, and Ilex crenata var. macrophylla, and yet ethychlozate was found either as equally as effective or more so than NAA for Zebrina pendula, Hibiscus syriacus, Fatshedera lizei, Schefflera arboricola, Campsis grandiflo ra, Ixora chinensis, Euonymus japonica, and Magnolia liliflora. On the contrary, no the auxin effect was noted with Lagerstroemia indica, Trachelospermum asiaticum, and Syringa vulgaris. This probably indicates that these species are genetically different for the auxin response.II. Effect of different pH and sorts of cutting media on rooting cuttings: 1) Bougainvillea showed best in rooting for the number and dry weight at pH 6.5, more with ethychlozate than NAA, while Ligustrum did at pH 5.0 more with NAA than ethychlozate. pH 4.0 medium resulted in the best rooting for Rhododendron with NAA, more than ethychlozate. 2) Use of cutting medium with peat: perlite: vermiculite = 1:1:1 showed to give the greatest rooting percent and dry weight, apart from considering the number of roots. This apparently meant the fact that cutting medium has more to do with root growth than root differentiation. Rhododendron yet showed results with cutting media that use of peat: perlite = 2:1 mixed is more effective on rooting than using peat alone.III. Effect of auxinic treatments on rooting cuttings and change in some cutting compositions: 1) Under the climatic conditions of July having temperature $26.3\pm$$2.4^{\circ}C$for cutting bed, new roots of Magnolia started to show up generally 20 days after the cutting was made, whereas Cestrum did much earlier than that, namely 14 days after. 2) Although total carbohydrate content of Magnolia cuttings showed no marked change without auxin treatment, it did so with the treatment, especially 30 days after the start of cutting. Cestrum cuttings demonstrated a gradual in crease in total carbohydrate content as rooting took place, and the content became reduced more with auxin than with out, just about when rooting proceeded to 14 days after the start of cutting. 3) Magnolia generally showed an increase in total nitrogen content as rooting proceeded more, and Cestrum showed a decrease in total nitrogen of cuttings. The auxin treatment exhibited no pertinent relation with change in plant nitro gen when rooting is promoted with auxin treatment. 4) An abrupt drop of total sugar and reducing sugar was noticed as Magnolia rooting started, and this reduction was parti cularly outstanding with auxin treatment. Starch content also was decreased in the later stage of cutting with auxin treatment, and was rather increased without auxin. Although sugar content soon increased as cutting started with auxin treatment in the case of Cestrum, it became reduced after rooting took place. 5) Total phenol content increased with rooting, and this was especially true when rooting started. This increase was reversed somehow regardless of auxin treatment. A decrease in phenol of Magnolia was found more striking with auxin than without in the later stage of the cutting period. 6)Avena coleoptile test for auxin-like substances presented the physiologically active factor is more in easy-to-root Magnolia liliflora than hard-to-root Magnolia kobus, and the activity of auxin-like substances was much increased with auxin treatment. The increase in the growth promoting substances was markedly pronounced when rooting just started. The active growth substances decreased in the later stage of cutting, and certain inhibitory substances started appearing. Cestrum also showed physiologically similar growth promoting substances accompanying auxin-like active substances if auxin is treated, and some strong inhibitory substances seemed to appear in the later stage of cutting. 7) Mung-bean-rooting test indicated biologically that endogenous growth substances in Magnolia all promoted mung-bean rooting, and activity of the growth substances apparently stimulated mung-bean rooting with auxin more than without. Here auxin treatment seemed to give a rise to an increased activity of endogenous growth substances in cuttings. This activity was found much greater with either NAA or IBA than ethychlozate, and showed its peak of the activity when rooting first started taking place. Certain inhibitory substances for Avena coleoptile growth strongly promoted mung-bean rooting, and it was also much like in the case of Cestrum.

  • PDF

Changes in Sink capacity and Source Activity of Rice Cultivars in Response to Shift of Heading date (벼 품종들의 출수기에 따른 동화산물 생산능력 및 수용기관 크기 변화)

  • Lee, Sok-Young;Kwon, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.260-267
    • /
    • 1995
  • In temperate zone planting rice at different date subjects the Crop to different climatic condition. The present study aimed at comparison of the change in source-sink relationship of the Japonica(J) and that of IndicaxJaponica(I$\times$J) type rice cultivars caused by shift of heading date. Two J- and two I$\times$J-type cultivars were made to head on August 16, August 26, and September 5. Sink capacity was changed by shift of heading date in different mode between the types of cultivars. In both types major determinant of sink capacity was number of effective tillers, and the number of spikelets per panicle was the minor. In J-type earlier planting/heading was beneficial to increased panicle numbers and this was due mainly to a larger diurnal difference in temperature. I$\times$J-type cultivars favored a higher daily mean temperature to increase the sink capacity. The ability of source at heading, in terms of leaf area per panicle, chlorophyll content per spiklet, photosynthetic ability of leaves per unit area at 25$\^{\circ}C$, carbohydrate and N contents of leaves, was not so different among different heading dates in both types. However, the source activity was governed principally by temperature during grain filling. The J-type cultivars headed on Sept. 5 and I$\times$J-type cultivars headed later than August 16 could not have had sufficient source activity in grain filling due to lower temperature.

  • PDF

Vegetation Characteristics in Cheongwansan Provincial Park (천관산도립공원의 식생 특성)

  • Ji-Woo Kang;Hyun-Mi Kang
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • This study was conducted to understand the vegetation characteristics of Cheongwansan Provincial Park through the analysis of the plant community structure and to build data necessary for the continuous management and protection of Cheongwansan Provincial Park. The TWINSPAN and DCS analyses of the plant community structure of 63 survey districts in Cheongwansan Provincial Park identified eight colonies, including Cryptomeria japonica Community (I), Chamaecyparis obtusa-Pinus densiflora Commuity (II), P. rigida-P. densiflora Community (III), mixed coniferous and broad-leaved Community (IV), P. densiflora Community (V), deciduous broad-leaved such as Quercus spp. Community (VI), Q. mongolica-P. densiflora Community (VII) and P. thunbergii Community (VIII). The colonies can be grouped into afforestation communities (I, II, and III) dominated by C. obtusa, C. japonica, and P. rigida and natural forest communities (IV, V, VI, VII, and VIII) dominated by native species. Although Cheongwansan Provincial Park is a provincial park area that can represent natural ecosystems and landscapes, the rate of artificial forests is higher than that of other provincial parks. Most of the artificial forest communities are expected to maintain their current state, but since native species such as Machilus thunbergii, Neolitsea sericea, and deciduous broad-leaved, which are warm-temperate trees introduced through surrounding natural forests, appear in the lower layer, it is determined that it is possible to induce succession to natural forests suitable for climatic characteristics through management, and monitoring for continuous management is also necessary. Deciduous broad-leaved such as Quercus spp. Copete with P. densiflora in most natural forest communities. The vegetation series in the warm-temperate region of Korea appears to be in the early stages, and it is believed that the succession to Q. serrata or Q. mongolica, which appears next to coniferous in the series, is in progress. However, M. thunbergii and N. sericea, which appear in the middle stage of the succession in the warm-temperate region, have started to appear, and since Jangheung-gun belongs to the warm-temperate region considering the climate characteristics, the eventual succession to the warm-temperate forests dominated by evergreen broad-leaved is also expected. In this study, we built vegetation data from Cheongwansan Provincial Park, which lacks research on vegetation. However, since vegetation research in Cheongwansan Provincial Park is still insufficient, it is believed that further research should be continuously conducted to establish forest vegetation data and observe vegetation changes.

Effect of Crating Density and Weather in Transit on Behavior, Surface Temperature, and Respiration Rate in Broilers Considering Animal Welfare (동물복지를 고려한 육계 운송 시 운송 밀도와 계절에 따른 행동, 체표면 온도, 호흡수 평가)

  • Jeseok Lee;Myunghwan Yu;Shan Randima Nawarathne;Elijah Ogola Oketch;Jung Min Heo
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.293-301
    • /
    • 2023
  • This study aimed to investigate the effects of seasonal differences and crating densities on the behavior, surface temperature, and respiration rate of broilers during transportation. A total of 600 broilers aged 35 days were divided into 10 treatment groups based on five crating densities (10.3, 11.5, 12.8, 14.1, 15.4 birds/m2) with two seasons (i.e. summer and winter) to give six replicates. Broilers were allocated to the crates (1.00 m × 0.78 m × 0.26 m) in a randomized design. The transportation distance was 20 km for 40 minutes (average 30-50 km/h) during the early morning. The results revealed that standing behavior of broilers during transportation was shown more frequently (P<0.05) in winter. Moreover, sitting behavior was significantly shown (P<0.05) more at densities of 14.1 birds/m2 and 15.4 birds/m2 compared to other treatments. Standing behavior was significantly shown more (P<0.05) in winter and lower crating density. Changes in broilers surface temperature after transportation were higher (P<0.05) in summer. However, surface temperature after transportation was not affected (P>0.05) by crating density, and interaction between seasonal differences and crating density. Respiration rate was higher (P<0.05) in summer. But there were no effects (P>0.05) on respiration rate based on crating density, and interaction between seasonal differences and crating density. Based on the results of the present study, broilers transportation is recommended in winter rather than summer to minimize the climatic stress, but further research is required to identify proper crating densities to improve the broilers welfare during transportation.

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Analytical Studies on Yield and Yield Components in Barley (대맥의 수량 및 수량구성요소에 관한 해석적 연구)

  • Chung-Yun Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.88-123
    • /
    • 1975
  • To obtain useful fundamental informations for improving cultural practices of barley, an investigation was made on the influences of different fertilizer level and seeding rate as well as seeding date on yield and yield components and their balancing procedure using barley variety Suwon # 18, and at the same time, 8 varieties including Suwon # 18 were also tested to clarify the varietal responses in terms of their yield and yield components under different seeding date at Crop Experiment Station, Suwon, during the period of 1969 and 1970. The results obtained were summarized as follows; 1. Days to emergence of barley variety Suwon # 18 at Suwon, took 8 to 19 days in accordance with given different seeding date (from Sept. 21 to Oct. 31). Earlier emergence was observed by early seeding and most of the seeds were emerged at 15$0^{\circ}C$ cumulated soil temperature at 5cm depth from surface under the favorable condition. 2. Degree of cold injury in different seeding date was seemed to be affected by the growth rate of seedlings and climatic condition during the wintering period. Over growth and number of leaves less than 5 to 6 on the main stem before wintering were brought in severe cold damage during the wintering period. 3. Even though the number of leaves on the main stem were variable from 11 to 16 depending upon the seeding date. this differences were occurred before wintering and less variation was observed after wintering. Particularly, differences of the number of main stem leaves from September 21 to October 11 seeding date were occurred due to the differences of number of main stem leaves before wintering. 4. Dry matter accumulation before wintering was high in early seeded plot and gradually decreased in accordance with delayed seeding date and less different in dry matter weight was observed after wintering. However, the increment rate of this dry matter was high from regrowth to heading time and became low during the ripening period. 5. Number of tillers per $\m^2$ was higher in early seeding than late one and dense planting was higher in the number of tillers than sparse planting. Number of tillers per plant was lower in number and variation in dense planting, and reverse tendency was observed in sparse planting. By increasing seedling rate in early seeding date the number of tiller per plant was remarkably decreased, but the seeding rate didn't affect the individual tillering capacity in the late seeding date. 6. Seedlings were from early planting reached maximum tillering stage earlier than those from the late planting and no remarkable changes was observed due to increased seeding rate. However. increased seeding rate tends to make it earlier the maximum tillering stage early. 7. Stage of maximum tillering was coincided with stage of 4-5 main stem leaves regardless the seeding date. 8. Number of heads per $\m^2$ was increased with increased seeding rate but considerable year variation in number of heads was observed by increased fertilizer level. Therefore, it was clear that there is no difficulties in increasing number of heads per $\m^2$ through increasing both fertilizer level and seeding rate. This type of tendency was more remarkable at optimum seeding time. In the other hand, seeding at optimum time is more important than increasing seeding rate, but increasing seeding rate was more effective in late seeding for obtaining desirable number of heads per $\m^2$. 9. Number of heads per $\m^2$ was decreased generally in all varieties tested in late seeding, but the degree of decrease by late seeding was lower in Suwon # 18. Yuegi, Hangmi and Buheung compared with Suwon # 4, Suwon # 6, Chilbo and Yungwolyukak. 10. Highly significant positive correlations were obtained between number of head and tillers per $\m^2$ from heading date in September 21 seeding, from before-wintering in October 1 seeding and in all growth period from October 11 to October 31 seeding. However, relatively low correlation coefficient was estimated between number of heads and tillers counted around late March to early April in any seeding date. 11. Valid tiller ratio varied from 33% to 76% and highest yield was obtained when valid tiller ratio was about 50%. Therefore, variation of valid tiller ratio was greater due to seeding date differences than due to seeding rate. Early seeding decreased the valid tiller ratio and gradually increased by delaying seeding date but decreased by increasing seeding rate. Among the varieties tested Suwon # 18, Hangmi, Yuegi as well as Buheung should be high valid tiller ratio not only in late seeding but also in early seeding. In contrast to this phenomena, Chilbo, Suwon # 4, Suwon # 6 and Yungwolyukak expressed low valid tiller ratio in general, and also exhibited the same tendency in late seeding date. 12. Number of grains per spike was increased by increasing fertilizer level and decreased by increasing seeding rate. Among the seeding date tested. October 21 (1969) and October 11 (1970) showed lowest number of grains per spike which was increased in both early seeding and late seeding date. There were no definite tendencies observed along with seeding date differences in respective varieties tested. 13. Variation of 1000 grain weight due to fertilizer level applied, seeding date and seeding rate was not so high as number of grains per spike and number of heads per $\m^2$, but exhibited high year variation. Increased seeding rate decreased the 1000 grain weight. Among the varieties tested Chilbo and Buheung expressed heavy grain weight, while Suwon # 18, Hangmi and Yuegi showed comparatively light grain weight. 14. Optimum seeding date in Suwon area was around October 1 to October 11. Yield was generally increased by increasing fertilizer level. Yield decrease due to early seeding was compensated in certain extent by increased fertilizer application. 15. Yield variations due to seeding rate differences were almost negligible compare to the variations due to fertilizer level and seeding date. In either early seeding or law fertilizer level yield variation due to seeding rate was not so remarkable. Increment of fertilizer application was more effective for yield increase especially at increased seeding rate. And also increased seeding rate fairly compensated the decrease of yield in late seeding date. 16. Optimum seeding rate was considered to be around 18-26 liters per 10a at N-P-K=10.5-6-6 kg/10a fertilizer level considering yield stabilization. 17. Varietal differences in optimum seeding date was quite remarkable Suwon # 6, Suwon # 4. Buheung noted high yield at early seeding and Suwon # 18, Yuegi and Hangmi yielded higher in seeding date of October 10. However, Buheung showed late seeding adaptability. 18. Highly significant positive correlations were observed between yield and yield components in all treatments. However, this correlation coefficient was increased positively by increased fertilizer level and decreased by increased seeding rate. Significant negative correlation coefficients were estimated between yield and number of grains per spike, since increased number of heads per m2 at the same level of fertilizer tends to decrease the number of grains per spike. Comparatively low correlation coefficients were estimated between 1000 grain weight and yield. 19. No significant relations in terms of correlation coefficients was observed between number of heads per $\m^2$ and 1000 grain weight or number of grains per head.

  • PDF