• Title/Summary/Keyword: Climate prediction systems

Search Result 108, Processing Time 0.026 seconds

A Study on Predicting the demand for Public Shared Bikes using linear Regression

  • HAN, Dong Hun;JUNG, Sang Woo
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • As the need for eco-friendly transportation increases due to the deepening climate crisis, many local governments in Korea are introducing shared bicycles. Due to anxiety about public transportation after COVID-19, bicycles have firmly established themselves as the axis of daily transportation. The use of shared bicycles is spread, and the demand for bicycles is increasing by rental offices, but there are operational and management difficulties because the demand is managed under a limited budget. And unfortunately, user behavior results in a spatial imbalance of the bike inventory over time. So, in order to easily operate the maintenance of shared bicycles in Seoul, bicycles should be prepared in large quantities at a time of high demand and withdrawn at a low time. Therefore, in this study, by using machine learning, the linear regression algorithm and MS Azure ML are used to predict and analyze when demand is high. As a result of the analysis, the demand for bicycles in 2018 is on the rise compared to 2017, and the demand is lower in winter than in spring, summer, and fall. It can be judged that this linear regression-based prediction can reduce maintenance and management costs in a shared society and increase user convenience. In a further study, we will focus on shared bike routes by using GPS tracking systems. Through the data found, the route used by most people will be analyzed to derive the optimal route when installing a bicycle-only road.

Observational Evidence of Giant Cloud Condensation Nucleus Effects on the Precipitation Sensitivity in Marine Stratocumulus Clouds

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.498-510
    • /
    • 2022
  • Cloud-aerosol interactions are one of the paramount but least understood forcing factors in climate systems. Generally, an increase in the concentration of aerosols increases the concentration of cloud droplet numbers, implying that clouds tend to persist for longer than usual, suppressing precipitation in the warm boundary layer. The cloud lifetime effect has been the center of discussion in the scientific community, partly because of the lack of cloud life cycle observations and partly because of cloud problems. In this study, the precipitation susceptibility (So) matrix was employed to estimate the aerosols' effect on precipitation, while the non-aerosol effect is minimized. The So was calculated for the typical coupled, well-mixed maritime stratocumulus decks and giant cloud condensation nucleus (GCCN) seeded clouds. The GCCN-artificially introduced to the marine stratocumulus cloud decks-is shown to initiate precipitation and reduces So to approximately zero, demonstrating the cloud lifetime hypothesis. The results suggest that the response of precipitation to changes in GCCN must be considered for accurate prediction of aerosol-cloud-precipitation interaction by model studies

The Variation of Yield-Related Traits of the QTL Pyramiding Lines for Climate-resilience and Nutrition Uptake in Rice

  • Joong Hyoun Chin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.14-14
    • /
    • 2022
  • Greenhouse gas emissions are one of the critical factors that drive change in rice cropping systems. Within this changing system, less water irrigation and chemical fertilizer are seriously considered, as well combining precision farming technologies with irrigation control. Water and phosphorus (P) fertilizer are two of the most critical inputs in rice cultivation. Due to the lack of water availability in the system, P fertilizer is not available, especially in acidic soil conditions. Moreover, the various types of abiotic stresses, such as drought, high temperature, salinity, submergence, and limited fertilizer result in significant yield loss in the system. Even in the late stage of growth, the waves caused by diseases and insects make the field more unfruitful. Therefore, agronomists and breeders need to identify the secondary phenotypes to estimate the yield loss of when stress appears. The prediction will be clearer if we have a set of markers tagging the causal variation and the associated precise phenotype indices. Although there have been various studies for abiotic stress tolerance, we still lack functional molecular markers and phenotype indices. This is due to the underlying challenges caused by environmental factors in highly unpredictable regional and yearly environmental conditions in the field system. Pupl (phosphorus uptake 1) is still known as the first QTL associated with phosphorus uptake and have been validated in different field crops. Interestingly, some pyramiding lines of Pupl and other QTLs for other stress tolerances showed preferable phenotypes in the yield. Precise physiological studies with the help of genomics are on-going and some results will be discussed.

  • PDF

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches (시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지)

  • Jung, Sihun;Kim, Young Jun;Park, Sumin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1077-1093
    • /
    • 2020
  • Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

The Effect of Micro-Pore Configuration on the Flow and Thermal Fields of Supercritical CO2

  • Choi, Hang-Seok;Park, Hoon-Chae;Choi, Yeon-Seok
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • Currently, the technology of $CO_2$ capture and storage (CCS) has become the main issue for climate change and global warming. Among CCS technologies, the prediction of $CO_2$ behavior underground is very critical for $CO_2$ storage design, especially for its safety. Hence, the purpose of this paper is to model and simulate $CO_2$ flow and its heat transfer characteristics in a storage site, for more accurate evaluation of the safety for $CO_2$ storage process. In the present study, as part of the storage design, a micro pore-scale model was developed to mimic real porous structure, and computational fluid dynamics was applied to calculate the $CO_2$ flow and thermal fields in the micro pore-scale porous structure. Three different configurations of 3-dimensional (3D) micro-pore structures were developed, and compared. In particular, the technique of assigning random pore size in 3D porous media was considered. For the computation, physical conditions such as temperature and pressure were set up, equivalent to the underground condition at which the $CO_2$ fluid was injected. From the results, the characteristics of the flow and thermal fields of $CO_2$ were scrutinized, and the influence of the configuration of the micro-pore structure on the flow and scalar transport was investigated.

Development of Power Demand Forecasting Algorithm Using GMDH (GMDH를 이용한 전력 수요 예측 알고리즘 개발)

  • Lee, Dong-Chul;Hong, Yeon-Chan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.360-365
    • /
    • 2003
  • In this paper, GMDH(Croup Method of Data Handling) algorithm which is proved to be more excellent in efficiency and accuracy of practical use of data is applied to electric power demand forecasting. As a result, it became much easier to make a choice of input data and make an exact prediction based on a lot of data. Also, we considered both economy factors(GDP, export, import, number of employee, number of economically active population and consumption of oil) and climate factors(average temperature) when forecasting. We assumed target forecast period from first quarter 1999 to first quarter 2001, and suggested more accurate forecasting method of electric power demand by using 3-step computer simulation processes(first process for selecting optimum input period, second for analyzing time relation of input data and forecast value, and third for optimizing input data) for improvement of forecast precision. The proposed method can get 0.96 percent of mean error rate at target forecast period.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.