• Title/Summary/Keyword: Climate data

Search Result 3,737, Processing Time 0.034 seconds

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.

Visualization of Local Climates Based on Geospatial Climatology (공간기후모형을 이용한 농업기상정보 생산)

  • Yun Jin Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.272-289
    • /
    • 2004
  • The spatial resolution of local weather and climate information for agronomic practices exceeds the current weather service scale. To supplement the insufficient spatial resolution of official forecasts and observations, gridded climate data are frequently generated. Most ecological models can be run using gridded climate data to produce ecosystem responses at landscape scales. In this lecture, state of the art techniques derived from geospatial climatology, which can generate gridded climate data by spatially interpolating point observations at synoptic weather stations, will be introduced. Removal of the urban effects embedded in the interpolated surfaces of daily minimum temperature, incorporation of local geographic potential for cold air accumulation into the minimum temperature interpolation scheme, and solar irradiance correction for daytime hourly temperature estimation are presented. Some experiences obtained from their application to real landscapes will be described.

Pasture estimating with climate change over Mongolia using climate and NOAA/NDVI data

  • Erdenetuya, M.;Khudulmur, S.;Bolortsetseg, B.;Natsagdorj, L.;Batima, P.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.120-122
    • /
    • 2003
  • Geographical position and associated climatic influences can be a negative environmental condition that affects sustainable use of land resources, especially pastoral livestock production. Vegetation condition of the country is sensitively changes upon climate changes and human impacts. Within last 60 years data the annual air temperature has increased in 1.66 degrees in average and the total precipitation amount had almost no change. The main goal of this work is to relate climate change within last 20 years with pasture condition, estimated by NOAA/NDVI data set.

  • PDF

Development of Extreme Event Analysis Tool Base on Spatial Information Using Climate Change Scenarios (기후변화 시나리오를 활용한 공간정보 기반 극단적 기후사상 분석 도구(EEAT) 개발)

  • Han, Kuk-Jin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.475-486
    • /
    • 2020
  • Climate change scenarios are the basis of research to cope with climate change, and consist of large-scale spatio-temporal data. From the data point of view, one scenario has a large capacity of about 83 gigabytes or more, and the data format is semi-structured, making it difficult to utilize the data through means such as search, extraction, archiving and analysis. In this study, a tool for analyzing extreme climate events based on spatial information is developed to improve the usability of large-scale, multi-period climate change scenarios. In addition, a pilot analysis is conducted on the time and space in which the heavy rain thresholds that occurred in the past can occur in the future, by applying the developed tool to the RCP8.5 climate change scenario. As a result, the days with a cumulative rainfall of more than 587.6 mm over three days would account for about 76 days in the 2080s, and localized heavy rains would occur. The developed analysis tool was designed to facilitate the entire process from the initial setting through to deriving analysis results on a single platform, and enabled the results of the analysis to be implemented in various formats without using specific commercial software: web document format (HTML), image (PNG), climate change scenario (ESR), statistics (XLS). Therefore, the utilization of this analysis tool is considered to be useful for determining future prospects for climate change or vulnerability assessment, etc., and it is expected to be used to develop an analysis tool for climate change scenarios based on climate change reports to be presented in the future.

An Analysis of the Impact of Climate Change on the Korean Onion Market

  • BAEK, Ho-Seung;KIM, In-Seck
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2020
  • Purpose: Agriculture, which is heavily influenced by climate conditions, is one of the industries most affected by climate change. In this respect, various studies on the impact of climate change on the agricultural market have been conducted. Since climate change is a long-term phenomenon for more than a decade, long-term projections of agricultural prices as well as climate variables are needed to properly analyze the impact of climate change on the agricultural market. However, these long-term price projections are often major constraints on studies of climate changes. The purpose of this study is to analyze the impacts of climate changes on the Korean onion market using ex-post analysis approach in order to avoid the difficulties of long-term price projections. Research design, data and methodology: This study develops an annual dynamic partial equilibrium model of Korean onion market. The behavioral equations of the model were estimated by OLS based on the annual data from 1988 to 2018. The modelling system is first simulated to have actual onion market conditions from 2014 to 2018 as a baseline and then compared it to the scenario assuming the climatic conditions under RCP8.5 over the same period. Scenario analyses were simulated by both comparative static and dynamic approach to evaluate the differences between the two approaches. Results: According to the empirical results, if the climate conditions under RCP8.5 were applied from 2014 to 2018, the yield of onion would increase by about 4%, and the price of onion would decrease from 3.7% to 17.4%. In addition, the average price fluctuation rate over the five years under RCP8.5 climate conditions is 56%, which is more volatile than 46% under actual climate conditions. Empirical results also show that the price decreases have been alleviated in dynamic model compared with comparative static model. Conclusions: Empirical results show that climate change is expected to increase onion yields and reduce onion prices. Therefore, the appropriate countermeasures against climate change in Korean onion market should be found in the stabilization of supply and demand for price stabilization rather than technical aspects such as the development of new varieties to increase productivity.

Application of a Climate Suitability Model to Assess Spatial Variability in Acreage and Yield of Wheat in Ukraine (우크라이나 밀 재배 면적 및 수량의 공간적 변이 평가를 위한 기후적합도 모델의 활용)

  • Jin Yeong Oh;Shinwoo Hyun;Seungmin Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • It would be advantageous to predict acreage and yield of crops in major grain-exporting countries, which would improve decisions on policy making and grain trade in Korea. A climate suitability model can be used to assess crop acreage and yield in a region where the availability of observation data is limited for the use of process-based crop models. The objective of this study was to determine the climate suitability index of wheat by province in Ukraine, which would allow for the spatial assessment of acreage and yield for the given crop. In the present study, the official data of wheat acreage and yield were collected from the State Statistics Service of Ukraine. The EarthStat data, which is a data product derived from satellite data and official crop reports, were also gathered for the comparison with the map of climate suitability index. The Fuzzy Union model was used to create the climate suitability maps under the historical climate conditions for the period from 1970 to 2000. These maps were compared against actual acreage and yield by province. It was found that the EarthStat data for acreage and yield of wheat differed from the corresponding official data in several provinces. On the other hand, the climate suitability index obtained using the Fuzzy Union model explained the variation in acreage and yield at a reasonable degree. For example, the correlation coefficient between the climate suitability index and yield was 0.647. Our results suggested that the climate suitability index could be used to indicate the spatial distribution of acreage and yield within a region of interest.

Trend Analysis of Projected Climate Data based on CMIP5 GCMs for Climate Change Impact Assessment on Agricultural Water Resources (농업수자원 기후변화 영향평가를 위한 CMIP5 GCMs의 기후 전망자료 경향성 분석)

  • Yoo, Seung-Hwan;Kim, Taegon;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.69-80
    • /
    • 2015
  • The majority of projections of future climate come from Global Circulation Models (GCMs), which vary in the way they were modeled the climate system, and so it produces different projections about conceptualizing of the weather system. To implement climate change impact assessment, it is necessary to analyze trends of various GCMs and select appropriate GCM. In this study, climate data in 25 GCMs 41 outputs provided by Coupled Model Intercomparison Project Phase 5 (CMIP5) was downscaled at eight stations. From preliminary analysis of variations in projected temperature, precipitation and evapotranspiration, five GCM outputs were identified as candidates for the climate change impact analysis as they cover wide ranges of the variations. Also, GCM outputs are compared with trends of HadGCM3-RA, which are established by the Korean Meteorological Administration. From the results, it can contribute to select appropriate GCMs and to obtain reasonable results for the assessment of climate change.

Restoration of 19th-century Chugugi Rainfall Data for Wonju, Hamheung and Haeju, Korea (19세기 원주감영, 함흥감영, 해주감영 측우기 강우량 복원)

  • Kim, Sang-Won;Park, Jun-Sang;Kim, Jin-A;Hong, Yoon
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.129-135
    • /
    • 2012
  • This study restores rainfall measurements taken with the Chugugi (rain gauge) at Wonju, Hamheung, and Haeju from the Deungnok (government records from the Joseon Dynasty). We restored rainfall data corresponding to a total of 9, 13, and 18 years for Wonju, Hamheung, and Haeju, respectively. Based on the restored data, we reconstructed monthly rainfall data. Restoration was most successful for the rainy season months of June, July and August. The restored rainfall data were compared with the summer rainfall data for Seoul as recorded by the Seungjeongwon (Royal Secretariat). In June, the variation in the restored rainfall data was similar to that of the Seungjeongwon data for Seoul. In July and August, however, the variations in the reconstructed data were markedly different from those in the Seoul data (Seungjeongwon). In the case of the worst drought in the summer of 1888, a substantial shortage of rainfall was found in both the Seungjeongwon data for Seoul and the restored data for the three regional locations.

A study on Applicability through Comparison of Weather Data based on Micro-climate with existing Weather Data for Building Performative Design (건물 성능디자인을 위한 미기후 기반 기상데이터의 기존 기상데이터와 비교를 통한 활용 가능성 연구)

  • Kim, Eon-Yong;Jun, Han-Jong
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.101-108
    • /
    • 2011
  • The weather data has important role for performative building design. If the data location is close to building site, the result of performative design can be accurate. The data which have used nowadays in Korea are from U.S. Department of Energy (DOE) and Korea Solar Energy Society (KSES) but they cover only several locations in Korea which are 4 in DOE and 11 in KSES and there are opinions which it could be served building design efficiently even if the data are not enough. However the weather data for micro-climate are exist which are Green Building Studio Virtual Weather Station (GBS VWS) and Meteonorm weather data. Each weather data has different generation methods which are TMY2, TRY, MM5, and extrapolation. In this research, the weather date for climate are compared with DOE and KSES to check correlation. The result shows the value of correlation in Dry Bulb Temp. and Dew Point Temp. is around 0.9 so they have high correlation in both but in Wind Speed case the correlation(around 0.2) is not exist. In overall result, the data has correlation with DOE and KSES as the value of correlation 0.648 of GBS VW and 0.656 of Meteonorm. Even if the correlation value is not high enough, the patterns of difference in each weather element are similar in scatter plot.

Downscaling Technique of the Monthly Precipitation Data using Support Vector Machine (지지벡터기구를 이용한 월 강우량자료의 Downscaling 기법)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kwon, Hyun-Han;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.112-115
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as support vector machine neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the monthly precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 2 grid points including $127.5^{\circ}E/35^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, which produced the best results from the previous study. The output node of neural networks models consist of the monthly precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of SVM-NNM and MLP-NNM performances for the downscaling of the monthly precipitation data. We should, therefore, construct the credible monthly precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF