• 제목/요약/키워드: Climate Zone

검색결과 386건 처리시간 0.021초

RCP4.5와 8.5 시나리오를 이용한 온량지수 변화에 따른 서울시 적응 가능한 식물종 연구 (The Study of Adaptable Plant Species to the Change of Warmth Index by Using RCP4.5 and RCP8.5 Scenarios in Seoul City)

  • 공석준;김정섭;양금철;김경진
    • 한국습지학회지
    • /
    • 제17권3호
    • /
    • pp.273-282
    • /
    • 2015
  • 본 연구는 RCP 4.5와 RCP 8.5 기후변화 시나리오를 이용하여 서울시 온량지수 변화를 추정하였으며, 이에 따른 적응 가능한 식물종을 제안하였다. 기후변화 시나리오에 따라 서울시의 온량지수 변화의 차이는 있었으나 냉온대 남부림에서 난온대림으로 변화할 것으로 예상된다. 2010년부터 2099년까지 서울시 온량지수 분포변화를 예측한 결과에 따른 적응 가능한 식물종은 교목층에 졸참나무, 굴참나무, 소나무, 상수리나무, 때죽나무, 곰솔 등 6종이었으며, 관목층에는 쥐똥나무, 조록싸리, 개옻나무, 작살나무, 산딸기, 찔레꽃, 초피나무 등 7종이었고, 초본층은 주름조개풀, 고사리, 닭의 장풀 등 3종, 덩굴성식물에는 청미래덩굴, 댕댕이덩굴, 담쟁이덩굴, 인동, 계요등, 노박덩굴, 사위질빵, 멍석딸기, 마, 으름, 마삭줄 등, 등 11종을 포함하여 총 27종이 공통적으로 기후변화 시나리오에 따라 온량지수의 변화에도 적응 가능할 것으로 예상된다.

The Records of Origin and Transport of Sediments From the Past to the Present in the Yellow Sea

  • Yi, Hi-Il;Chun, Jong-Hwa;Shin, Im-C.;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.96-106
    • /
    • 2004
  • A total of 116 surface sediment samples were obtained on the Yellow Sea and analyzed for grain size and geochemical elements in order to interpret the present sediment transportation. Thirty-nine cores and 3,070 line-km shallow seismic profiles are analyzed for sedimentary records of Yellow Sea in the past. Results show that the boundary of sediment transport between Korean side and Chinese side is about between $123^{\circ}E$ and $124^{\circ}E$. The similar result is produced from Shi et al. (in this publication). Two cyclonic patterns of surface sediments are recognized in the northeastern and southwestern Yellow Sea, while the strong front zone of the mud patch and sandy sediments are found in the southeastern Yellow Sea (the southwestern part of Korean coasts). The formation of fine-particle sediment packages, called for Northwest Mudbelt Deposit (NWMD), Hucksan Mudbelt Deposit (HSMD) and Jeju Mudbelt Deposit (JJMD), are resulted from eddies (gyres) of water circulations in the Yellow Sea. NWMD has been formed by cyclonic (anticlockwise) eddy. NWMD is composed of thick, homogeneous, relatively semi-consolidated gray clay-dominated deposit. On the other hand, HSMD and JJMD are formed by anticyclonic (clockwise) eddies. They are thick, homogeneous, organic-rich gray, silt-dominated deposit. Both core and surface sediments show that the middle zone across Chinese and Korean side contains bimodal frequency of grain-size distribution, indicating that two different transport mechanisms exist. These mud packages are surrounded by sand deposits from both Korea and China seas, indicating that Yellow Sea, which is the shallow sea and epicontinental shelf, is formed mostly by sand deposits including relict sands. The seismic profiles show such as small erosional/non-depositional channels, sand-ridges and sand-waves, Pleistocene-channelfilled deposits, a series of channels in the N-S major channel system, and thick Holocene sediment package, indicating that more complex sedimentary history exists in the Yellow Sea.

Foraminifera as an Indicator of Marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • 한국제4기학회지
    • /
    • 제19권2호
    • /
    • pp.35-37
    • /
    • 2005
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west coast of Korea, were collected to evaluate the effect of the outfall on benthic foraminifera. Heavy metal (Cu and Zn) polluted eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifera, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifera abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants from the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifera, low number of A. beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared to the downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-pyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifera do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-50 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

부상웨어 설치에 따른 대청호 조류 성장 억제 효과 수치모의 (Numerical Modeling Effects of a Skimmer Weir Method on the Control of Algal Growth in Daecheong Reservoir)

  • 김유경;정세웅;이흥수;정용락
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.581-590
    • /
    • 2007
  • A float-type weir has been proposed for the control of algal blooms in some of eutrophic reservoirs recently. It is known as a costly and ecologically sound method, but there is little understanding about the sustainability of this low-cost technology for reservoirs that are located in monsoon climate areas where large flood events during the summer cause high water surface fluctuations. The objective of this study was to assess the effectiveness of a skimmer weir aimed at controlling algal blooms in the lacustrine zone and near the drinking water withdrawal structures of Daecheong Reservoir under various hydrodynamic flow conditions. The effect of weir on the control of algal blooms was simulated using a laterally averaged two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface fluctuations. Numerical simulations were performed for two different hydrological conditions, 2001 and 2004 for representing drought year and normal year, respectively. The results showed that the weir is very effective method to control algal blooms in the reservoir by curtailing the transport of phosphorus and algae from contaminated inflow to the downstream lacustrine epilimnion during the draught year. However, large flood events occurred in 2004 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments.

일본 Chichibu산지 계반림의 입지환경 (Riparian forest and environment variables relationships, Chichibu mountains, central, Japan)

  • Ann, Seong-Won
    • 한국환경과학회지
    • /
    • 제12권2호
    • /
    • pp.93-100
    • /
    • 2003
  • In most mountainous parts of the temperate zone of Japan along the Pacific Ocean, some climatic climax forests, whose main dominant species is Fagus crenate, F. japonica or Quercus mongolica var. grosseserrata, are distributed. In the riparian regions of the zone, however, there appear summer green forests composed of the different species from the climatic climax forests. Climate plays an important role in determining the overall distribution of vegetation, but some environmental factors, i.e., topography, soil type, soil moisture content, etc. have a great influence on vegetation formation. Riparian forests seem to be controlled by various geomorphologic disturbances, such as landslide, soil erosion and accumulation. The study aims to present the relationships among vegetation, soils and landforms in the process of determining riparian forests dominated by Fraxinus platypoda and Pterocarya rhoifolia establishment in the mountainous region of central Japan. The study area extends an area of 302 ha with a range of elevation between 925 m and 1,681 m at the Chichibu mountains. The landforms were corditied at sampling grids (25 $\times$ 25 m, n = 4,843) using a hierarchical system, and a brief description of the forest soil classification was also given. The mutual relationship analysis indicated that forest soils and landforms play a significant role in determining the geomorphological process of riparian forest, and shaping the ultimate pattern of vegetation. At the study area, riparian forests were mainly found on the $B_E$ forest soil type and steep slopes ( > 30$^{\circ}$) at convex slopes along the streams. On the other hand, the direction of slopes did not have a significant impact on the establishment of the riparian forests. A mosaic of patchy distribution of those riparian forests on the slightly wetter $B_E$ forest soil type was one of the characteristic features of the study area. This particular soil which contained large talus gravels was found on the land formed by erosion and deposition of landslide.

ESCORT 모형의 3차원 적용성 - 담수방류 모의 (3-D Applicability of the ESCORT Model - Simulation of Freshwater Discharge)

  • 강주환;김양선;박선중;소재귀
    • 한국해안·해양공학회논문집
    • /
    • 제21권3호
    • /
    • pp.230-240
    • /
    • 2009
  • 선행연구에서 개발된 ESCORT 모형을 사용하여 영산강하구언 배수갑문을 통한 담수방류의 영향성을 분석하였다. 낙조우세를 감안한 해수유동 모의를 통해 2차원 뿐 아니라 3차원 흐름해석에 있어서도 모형의 적용성과 타당성을 입증하였다. 방류가 흐름양상에 미치는 영향성을 분석하였으며, 담수방류 모의 결과 확산현상은 3차원 모형으로 해석해야 함을 확인할 수 있었다. 또한, 방류구 인근에서 염도의 연직분포 특성을 규명하였고 목포해역 담수확산 범위를 추정하였다. 그 결과 외해수와의 해수교환이 원활치 않음에 기인하여, 목포해역에서는 담수농도의 희석이 매우 느리게 진행되고 있음을 확인할 수 있었다.

SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발 (Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints)

  • 신용철;이태화;김상우;이현우;최경숙;김종건;이기하
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

고해상도 위성영상 및 기후·지형 데이터를 이용한 DMZ 불모지의 유형화 (Classification of the damaged areas in the DMZ (demilitarized zone) using high-resolution satellite images and climate and topography data)

  • 이아영;신현탁;박기쁨;정지영;성찬용
    • 한국환경복원기술학회지
    • /
    • 제23권1호
    • /
    • pp.1-14
    • /
    • 2020
  • In this study, we 1) identified the damaged areas along the south limit line (SLL) of the demilitarized zone (DMZ) by the military's 'DMZ barren land campaign', and 2) categorized the identified damaged areas into a few ecological types. Using high-resolution satellite images, we delineated the total damaged areas to be 1,183.2 ha, which accounted for 50.1% of the 100-m northern buffer regions from the SLL. Of the total damaged areas, 16% were severely damaged, i.e., they had been damaged until recently and so remained barren without vegetation cover. In other areas, the levels of damage were either moderate (59.9%) or slight (24.1%), due to natural succession that turned those areas to grassland or forest. Using satellite image-derived land cover maps and climatic and topographic data, we categorized the damaged areas into seven types: lowland grassland (19.8%), western lowland forest (21.4%), low-altitude forest (25.5%), mid-altitude forest (18.4%), high-altitude forest (6.8%), vicinity in east coast (7.9%), and waterbody (0.2%). These types can be used to identify proper measures to restore ecosystems in the DMZ for now and after Korean reunification.

입지 환경 인자를 이용한 DMZ 남측 철책선 주변 훼손지 유형화 (Classification of the Damaged Areas in the DMZ (Demilitarized zone) by Location Environments)

  • 박기쁨;김상준;이아영;김동학;유승봉
    • 한국환경복원기술학회지
    • /
    • 제24권2호
    • /
    • pp.71-84
    • /
    • 2021
  • Restoration of DMZ has come up with the discussion on the peaceful use of the DMZ and the conservation plan of the army. In this study, we aim to identify soil characteristics of 108 sites to figure out environmental conditions around the iron fence of DMZ where vegetation has been removed repeatedly. Based on the soil characteristics and climate variables, hierarchy clustering was performed to categorize sites. As a result, we categorized 108 sites into 4 types: middle elevation region, lowland, East coast lowland, other areas. Group of 'other area' is only high in nutrient and clay proportion. Others are in igneous rock and metamorphic rocks with a high proportion of sand and lower nutrients than the optimum range of growth in Korean forest soil. The middle elevation region has a high altitude, low temperature. The east coast lowland has a high temperature in January and low precipitation. The lowland has a low altitude and high temperature. This category provides the environmental condition around the DMZ fence and can be used to select plants for restoration. The restoration project around the DMZ iron fence should satisfy the security of military plans, which means that functional restoration is prior to ecological restoration such as vegetation management under a power line. Additionally, improvement of soil quality and surface stability through restoration projects is required to enhance the resilience of the ecosystem in DMZ.

CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석 (Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2)

  • 박형석;정세웅
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.