• 제목/요약/키워드: Climate Temperature

검색결과 2,524건 처리시간 0.025초

Assessment of causality between climate variables and production for whole crop maize using structural equation modeling

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.339-353
    • /
    • 2021
  • This study aimed to assess the causality of different climate variables on the production of whole crop maize (Zea mays L.; WCM) in the central inland region of the Korea. Furthermore, the effect of these climate variables was also determined by looking at direct and indirect pathways during the stages before and after silking. The WCM metadata (n = 640) were collected from the Rural Development Administration's reports of new variety adaptability from 1985-2011 (27 years). The climate data was collected based on year and location from the Korean Meteorology Administration's weather information system. Causality, in this study, was defined by various cause-and-effect relationships between climatic factors, such as temperature, rainfall amount, sunshine duration, wind speed and relative humidity in the seeding to silking stage and the silking to harvesting stage. All climate variables except wind speed were different before and after the silking stage, which indicates the silking occurred during the period when the Korean season changed from spring to summer. Therefore, the structure of causality was constructed by taking account of the climate variables that were divided by the silking stage. In particular, the indirect effect of rainfall through the appropriate temperature range was different before and after the silking stage. The damage caused by heat-humidity was having effect before the silking stage while the damage caused by night-heat was not affecting WCM production. There was a large variation in soil surface temperature and rainfall before and after the silking stage. Over 350 mm of rainfall affected dry matter yield (DMY) when soil surface temperatures were less than 22℃ before the silking stage. Over 900 mm of rainfall also affected DMY when soil surface temperatures were over 27℃ after the silking stage. For the longitudinal effects of soil surface temperature and rainfall amount, less than 22℃ soil surface temperature and over 300 mm of rainfall before the silking stage affected yield through over 26℃ soil surface temperature and less than 900 mm rainfall after the silking stage, respectively.

남한지역의 최근 30년간 기온분포에 의한 기후권역 설정 (Establishment of Climate Region by Recent 30-year Temperature Range in South Korea Area)

  • 류연수;박미란;김진욱;주혜진
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.376-382
    • /
    • 2011
  • Since the Industrial Revolution has caused global change by using of a fossil fuel, a reckless and growth-oriented development. A global mean temperature since 19th century has climbed up 0.4~$0.8^{\circ}C$. Our country, afterwards, global warming has increased the temperature every season. After The Kyoto Protocol regarding a greenhouse gas reduction goal took effect, be situations that decrease of greenhouse gas was acutely required. Therefore, interest of utilization of the new & renewable energy is increasing everyday. In advanced research, we shows that at first divided a country to nine range by natural geography, and second executed Meteorological data analysis of recent 30 years considering level of significance by nine range. The results of advanced research are that the similarities are low because there are the regions that temperature deviation of the similar climate regions is large in winter season, and there are not characteristics of clear discrimination of temperature. This study shows that at first divided a country to six range by temperature range, and second executed Meteorological data analysis of recent 30 years considering level of significance by six range. The results of this study are that in heating load calculation of building, periodic temperature data management is required because facility capacity and cost are affected greatly by outdoor temperature, and temperature by climate range needs consideration of pertinent area. Ground temperature was assumed of the weather in region, the ground and soil. Lastly, we were able to know that establishment of climate region by temperature range can be useful policy making and plans of design of the horticultural facilities and architectures.

  • PDF

온습도지수를 활용한 젖소의 기후변화 영향변동 예측 (Predicted Impacts of Climate Change on Dairy Cattle using Temperature Humidity Index (THI))

  • 김별;임정수;조성백;황옥화;양승학
    • 한국축산시설환경학회지
    • /
    • 제20권2호
    • /
    • pp.49-56
    • /
    • 2014
  • The climate of the earth is expected to change rapidly and continuously. Despite climate change is expected to impact on productivity of crop and livestock, a study for adaptation and impact of livestock to global warming is not enough. This study was performed to develop a method to evaluate the effects of heat stress on dairy cattle. Feedlot environment and health status of livestock were measured through an infrared thermography camera and a temperature-humidity sensor. Environmental factors such as temperature and humidity were measured to calculate the Temperature humidity index (THI). The change of the milk yield was similar to THI data pattern, suggesting that THI might play an important role to predict the effect of climate change on dairy cattle. THI data would be useful to predict long-term climate change effects on dairy cattle with RCP8.5 scenario.

탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향 (Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia)

  • 김윤아;최정;손석우
    • 대기
    • /
    • 제33권5호
    • /
    • pp.505-517
    • /
    • 2023
  • This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.

High Frequency Variation of Low Water Temperature due to Arctic Oscillation Around the Western and Southern Coast of Korea During Winter 2017/2018

  • Han, In-Seong;Lee, Joon-Soo;Kim, Ju-Yeon;Hong, Ji-Yeon
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.328-333
    • /
    • 2019
  • During the winter of 2017/2018, significantly low water temperatures were detected around the western and southern coasts of Korea (WSCK). In this period, sea surface temperature (SST) in the Korea Waters was about $2^{\circ}C$ lower than mean temperature. Using the real-time observation system, we analyzed the temporal variation of SST during this period around the western and southern coasts. Low water temperature usually manifested over a period of about 10 ~ 20 days. The daily Arctic oscillation index was also similarly detectable with the variation of SST. From the cross-correlation function, we compared two periodic variations, which were SST around the WSCK and the Arctic oscillation index. The cross correlation coefficients between both variations were approximately 0.3 ~ 0.4. The time lag of the two time series was about 6 to 7 days. Therefore, significantly low water temperatures during winter in the Korean coastal areas usually became detectable 6 to 7 days after the negative peak of Arctic oscillation.

Impact of abnormal climate events on the production of Italian ryegrass as a season in Korea

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.77-90
    • /
    • 2021
  • This study aimed to assess the impact of abnormal climate events on the production of Italian ryegrass (IRG), such as autumn low-temperature, severe winter cold and spring droughts in the central inland, southern inland and southern coastal regions. Seasonal climatic variables, including temperature, precipitation, wind speed, relative humidity, and sunshine duration, were used to set the abnormal climate events using principal component analysis, and the abnormal climate events were distinguished from normal using Euclidean-distance cluster analysis. Furthermore, to estimate the impact caused by abnormal climate events, the dry matter yield (DMY) of IRG between abnormal and normal climate events was compared using a t-test with 5% significance level. As a result, the impact to the DMY of IRG by abnormal climate events in the central inland of Korea was significantly large in order of severe winter cold, spring drought, and autumn low-temperature. In the southern inland regions, severe winter cold was also the most serious abnormal event. These results indicate that the severe cold is critical to IRG in inland regions. Meanwhile, in the southern coastal regions, where severe cold weather is rare, the spring drought was the most serious abnormal climate event. In particular, since 2005, the frequency of spring droughts has tended to increase. In consideration of the trend and frequency of spring drought events, it is likely that drought becomes a NEW NORMAL during spring in Korea. This study was carried out to assess the impact of seasonal abnormal climate events on the DMY of IRG, and it can be helpful to make a guideline for its vulnerability.

기후요소가 건설안전사고에 미치는 영향에 관한 연구 (A Study on the Influence of Climate Factors on Construction Accidents)

  • 손창백;김상철
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.91-97
    • /
    • 2005
  • The purpose of this study is to provide basic data for establishment of prevention counterplan against construction accidents in preparation for variation of climate conditions. In order to execution of this study, it was analyzed relations of climate factors and cases of construction accident occurred construction sites. In occurrence of construction accidents inducing death upon variation of Climate factors, precipitation and wind velocity were not related directly to construction accidents inducing death. On the other hand, the more temperature and humidity are high, the more construction accidents inducing death occurred. Especially, when temperature and humidity are above $24^{\circ}C,\;70\%$ respectively, field managers must pay attention to safety management of construction sites.

공간기후모형을 이용한 농업기상정보 생산 (Visualization of Local Climates Based on Geospatial Climatology)

  • 윤진일
    • 한국농림기상학회지
    • /
    • 제6권4호
    • /
    • pp.272-289
    • /
    • 2004
  • The spatial resolution of local weather and climate information for agronomic practices exceeds the current weather service scale. To supplement the insufficient spatial resolution of official forecasts and observations, gridded climate data are frequently generated. Most ecological models can be run using gridded climate data to produce ecosystem responses at landscape scales. In this lecture, state of the art techniques derived from geospatial climatology, which can generate gridded climate data by spatially interpolating point observations at synoptic weather stations, will be introduced. Removal of the urban effects embedded in the interpolated surfaces of daily minimum temperature, incorporation of local geographic potential for cold air accumulation into the minimum temperature interpolation scheme, and solar irradiance correction for daytime hourly temperature estimation are presented. Some experiences obtained from their application to real landscapes will be described.

SIMULATION OF SOIL MOISTURE VARIABILITY DUE TO CLIMATE ORANGE IN NORTHEAST POND RIVER WATERSHED, NEWFOUNDLAND, CANADA

  • A. Ghosh Bobba;Vijay P. Singh
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.31-43
    • /
    • 2003
  • The impacts of climate change on soil moisture in sub - Arctic watershed simulated by using the hydrologic model. A range of arbitrary changes in temperature and precipitation are applied to the runoff model to study the sensitivity of soil moisture due to potential changes in precipitation and temperature. The sensitivity analysis indicates that changes in precipitation are always amplified in soil moisture with the amplification factor for flow. The change in precipitation has effect on the soil moisture in the catchment. The percentage change in soil moisture levels can be greater than the percentage change in precipitation. Compared to precipitation, temperature increases or decreases alone have impacts on the soil moisture. These results show the potential for climate change to bring about soil moisture that may require a significant planning response. They are also indicative of the fact that hydrological impacts affecting water supply may be important in consider-ing the cost and benefits of potential climate change.

  • PDF