• 제목/요약/키워드: Climate Temperature

검색결과 2,524건 처리시간 0.029초

녹지대 분포가 도시 지역의 소기후에 미치는 영향 (On the Impacts to the Loca l Climate Change of Urban Area due to the Vegetation Canopy)

  • 진병화;변희룡
    • 한국환경과학회지
    • /
    • 제9권2호
    • /
    • pp.101-108
    • /
    • 2000
  • Through numerical experiment using simplified OSU-1D PBL(Oregon State University One-Dimensional Planetary Boundary Layer) model and field measurement, we studied the impacts of vegetation canopy on heat island that was one of the characteristics of local climaate in urban area. it was found that if the fraction of vegetation was extended by 10 percent, the maximum air temperature and the maximum ground temperature can come down about 0.9${\circ}C$, 2.3${\circ}C$, respectively. Even though the field measurement was done under a little unstable atmospheric condition, the canopy air temperature was lower in the daytime, and higher at night than the air and ground temperature. This result suggests that the extention of vegetation canopy can bring about more pleasant local climate by causing the oasis, the shade and the blanket effect.

  • PDF

인도 서히말리아산 블루파인(Pinus wallichiana)의 연륜생장과 기후와의 관계 (Climate and Growth Relationship in Blue Pine (Pinus wallichiana) from the Western Himalaya, India)

  • ;;박원규
    • The Korean Journal of Ecology
    • /
    • 제20권2호
    • /
    • pp.95-102
    • /
    • 1997
  • Ring width chronologies of blue pine (pinus wallichiana) from two mesic sites, Kanasar(2, 400 m) and Gangotri(3, 000 m), in the western Himalayan region. India were developed to understand tree growth-climate relationship and its applicability in proxy climate studies. The resoponse function analyses of the two chronologies show that the site conditions play an important role in modulating the effect of climatic variables on tree growth. Winter temperature, prior to the growth year, has been found to play positive influence on blue pine growth at both sites. Summer temperature also has very similar response except for June and August. June temperature has negative influence at the lower in contrary to at the higher site. Low August temperature favors tree growth to precipitation has been found to vary which could be due to different precipitation regime at the two sites. Winter precipitation is important for tree growth at the higher, whereas summer at the lower sits. The present study suggests that the tree ring materials of blue pine from the temperate Himalayan regions could be used to develop chronologies for the reconstruction of seasonal climatic variables.

  • PDF

High-Temperature-Tolerant Fungus and Oomycetes in Korea, Including Saksenaea longicolla sp. nov.

  • Nam, Bora;Lee, Dong-Jae;Choi, Young-Joon
    • Mycobiology
    • /
    • 제49권5호
    • /
    • pp.476-490
    • /
    • 2021
  • Global temperatures are steadily increasing, leading to significant changes in microbial diversity and ecology. In the present study, we isolated high-temperature-growing fungi and fungi-like group (Oomycota) strains from freshwater environments of Korea and identified them based on cultural, morphological, and multilocus phylogenetic analyses. As a result, we introduce Saksenaea (Fungi) isolates as a new species, Saksenaea longicolla sp. nov. and record Phytophthora chlamydospora and P. lagoariana (Oomycota) new to Korea. In the growth experiments, they exhibited high-temperature tolerance, which can grow at 35-40 ℃ but become inactive at 4 ℃ and below. This study confirms the presence of high-temperature-tolerant fungi and oomycetes in Korea and suggests that the Korean climate conditions are changing in favor of these species. This indicates that climate warming is altering microbial distributions in freshwater environments.

ECHO-G/S를 활용한 미래 동아시아 기후 전망 (Future Climate Projection over East Asia Using ECHO-G/S)

  • 차유미;이효신;문자연;권원태;부경온
    • 대기
    • /
    • 제17권1호
    • /
    • pp.55-68
    • /
    • 2007
  • Future climate changes over East Asia are projected by anthropogenic forcing of greenhouse gases and aerosols using ECHO-G/S (ECHAM4/HOPE-G). Climate simulation in the 21st century is conducted with three standard SRES scenarios (A1B, B1, and A2) and the model performance is assessed by the 20th Century (20C3M) experiment. From the present climate simulation (20C3M), the model reproduced reliable climate state in the most fields, however, cold bias in temperature and dry bias of summer in precipitation occurred. The intercomparison among models using Taylor diagram indicates that ECHO-G/S exhibits smaller mean bias and higher pattern correlation than other nine AOGCMs. Based on SRES scenarios, East Asia will experience warmer and wetter climate in the coming 21st century. Changes of geographical patterns from the present to the future are considerably similar through all the scenarios except for the magnitude difference. The temperature in winter and precipitation in summer show remarkable increase. In spite of the large uncertainty in simulating precipitation by regional scale, we found that the summer (winter) precipitation at eastern coast (north of $40^{\circ}N$) of East Asia has significantly increased. In the 21st century, the warming over the continents of East Asia showed much more increase than that over the ocean. Hence, more enhanced (weakened) land-sea thermal contrast over East Asia in summer (winter) will cause strong (weak) monsoon. In summer, the low pressure located in East Asia becomes deeper and the moisture from the south or southeast is transported more into the land. These result in increasing precipitation amount over East Asia, especially at the coastal region. In winter, the increase (decrease) of precipitation is accompanied by strengthening (weakening) of baroclinicity over the land (sea) of East Asia.

기후모델에 나타난 미래기후에서 쓰시마난류의 변화와 그 영향 (Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models)

  • 최아라;박영규;최희진
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.127-134
    • /
    • 2013
  • In this study we investigated changes in the Tsushima Warm Current (TWC) under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program's (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

Evaluation of climate change on the rice productivity in South Korea using crop growth simulation model

  • Lee, Chung-Kuen;Kim, JunHwan;Shon, Jiyoung;Yang, Won-Ha
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2011년도 학술발표회
    • /
    • pp.16-18
    • /
    • 2011
  • Evaluation of climate change on the rice productivity was conducted using crop growth simulation model, where Odae, Hwaseong, Ilpum were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and climate change scenario 'A1B' was applied to weather data for future climate change at 57sites. When cropping season was fixed, rice yield decreased by 4~35% as climate change which was caused by poor filled grain ratio with high temperature and low irradiation during grain-filling. When cropping season was changed, rice yield decreased by only 0~5% as climate change which was caused poor filled grain ratio with low irradiation during grain-filling period. However, this irradiation decline was less than when cropping season was fixed. Therefore, we need to develop rice cultivars resistant to low irradiation which can maintain high filled grain ratio under poor irradiation condition, and late maturity rice cultivars whose growing period is longer than the present medium-late maturity type.

  • PDF

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • 제54권4호
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

함정 표면 적외선 신호에 대한 해양기상 영향분석 (A Study on the Infrared Signature of a Naval Ship under the Marine Climate)

  • 김윤식
    • 대한조선학회논문집
    • /
    • 제49권3호
    • /
    • pp.264-272
    • /
    • 2012
  • A study on the IR(InfraRed) signature of a naval ship has been performed using well known IR signature analysis software, ShipIR/NTCS. Variations of the IR signature radiated from skins of a naval ship have been investigated according to the monthly averaged marine climate conditions. An unclassified destroyer model with and without applying the washdown system was applied to compare the influence on the signature under the background changes. The marine background models were created from the observed data by a buoy of Korea Meterological Administration(KMA). The sensitivity of the ship signature against the climate variables such as air temperature, sea temperature, relative humidity has been studied as well. The seasons which show extreme(max, min) skin signature change by whether the washdown is applied or not. The sensitivities of the air temperature and the sea temperature for a dry-ship reversed by applying the washdown on the ship surfaces.

Spatio-Temporal Variation of Cold Water Masses along the Eastern Coast of Korea in 2013 and 2014

  • Han, In-Seong;Park, Myung-Hee;Min, Seung-Hwan;Kim, Ju-Yeon
    • 해양환경안전학회지
    • /
    • 제22권3호
    • /
    • pp.286-295
    • /
    • 2016
  • With the results of observations in 2013 and 2014 including ocean buoys, in-situ investigations and wind data, we examined the spatio-temporal variation of cold water masses along the eastern coast of Korea. Usually, a cold water mass first appears along the northern part of the eastern coast from May to July, and then along the southern part of the eastern coast from late June to mid-August. Cold water masses appear 3~5 times a year and remain for 5~20 days in the southwestern part of the East Sea. A distinctive cold water mass appeared usually in mid-July in this area, the surface temperature of which was below $10^{\circ}C$ in some cases. During the appearance of a cold water mass in the southwestern part of the East Sea, the horizontal temperature gradient was large at the surface and a significant low water temperature below $8^{\circ}C$ appeared at the bottom level. This appearance of cold water masses clearly corresponded to southwesterly winds, which generated coastal upwelling.

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF