• Title/Summary/Keyword: Climate Scenario

Search Result 658, Processing Time 0.031 seconds

Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index (기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석)

  • Nam, Ki-Pyo;Kang, Jeong-Eon;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

Developing Model of Drought Climate Scenarios for Agricultural Drought Mitigation (농업가뭄대응을 위한 가뭄기상시나리오 모델 개발 및 적용)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Nam, Won-Ho;Kim, Tae-Gon;Go, Gwang-Don
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.67-75
    • /
    • 2012
  • Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Evaluation and forecast the status of drought for the present and future utilizing the meteorological scenario for agricultural drought can be useful to set a plan for agricultural drought mitigation in agriculture water resource management. In this study, drought climate scenario model on the basis of historical drought records for preparing agricultural drought mitigation was developed. To consider dependency and correlation between various climate variables, this model was utilized the historical climate pattern using reference year setting of four drought levels. The reference year for drought level was determined based on the frequency analysis result of monthly effective rainfall. On the basis of this model, drought climate scenarios at Suwon and Icheon station were set up and these scenarios were applied on the water balance simulation of reservoir water storage for Madun reservoir as well as the soil moisture model for Gosam reservoir watershed. The results showed that drought climate scenarios in this study could be more useful for long-term forecast of longer than 2~3 months period rather than short-term forecast of below one month.

Assessment of Flood Vulnerability for Small Reservoir according to Climate Change Scenario - Reservoir in Gyeonggi-do - (기후변화 시나리오에 따른 소규모 저수지의 홍수 취약성 평가 - 경기도 내 저수지를 중심으로 -)

  • Heo, Joon;Bong, Tae-Ho;Kim, Seong-Pil;Jun, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.53-65
    • /
    • 2022
  • Most of the reservoirs managed by the city and county are small and it is difficult to respond to climate change because the drainage area is small and the inflow increases rapidly when a heavy rain occurs. In this study, the current status of reservoirs managed by city and county in Gyeonggi-do was reviewed and flood vulnerability due to climate change was analyzed. In order to analyze the impact of climate change, CMIP6-based future climate scenario provided by IPCC was used, and future rainfall data was established through downscaling of climate scenario (SSP8-8.5). The flood vulnerability of reservoirs due to climate change was evaluated using the concept provided by the IPCC. The future annual precipitation at six weather stations appeared a gradual increase and the fluctuation range of the annual precipitation was also found to increase. As a result of calculating the flood vulnerability index, it was analyzed that the flood vulnerability was the largest in the 2055s period and the lowest in the 2025s period. In the past period (2000s), the number of D and E grade reservoirs was 58, but it was found to increase to 107 in the 2055s period. In 2085s, there were 17 E grade reservoirs, which was more than in the past. Therefore, it is necessary to take measures against the increasing risk of flooding in the future.

Prediction of Land-cover Changes and Analysis of Paddy Fields Changes Based on Climate Change Scenario (A1B) in Agricultural Reservoir Watersheds (기후변화 시나리오 (A1B)에 따른 농업용 저수지 유역의 미래 토지피복변화 예측 및 논 면적 변화 특성 분석)

  • Oh, Yun-Gyeong;Yoo, Seung-Hwan;Lee, Sang-Hyun;Park, Na-Young;Choi, Jin-Yong;Yun, Dong-Koun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.77-86
    • /
    • 2012
  • This study was aim to predict future land-cover changes and to analyze regional land-cover changes in irrigation areas and agricultural reservoir watersheds under climate change scenario. To simulate the future land-cover under climate change scenario - A1B of the SRES (Special Report on Emissions Scenarios), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation to socioeconomic and biophysical driving factors. For the study areas, 8 agricultural reservoirs were selected from 8 different provinces covering all around nation. The simulation results from 2010 to 2100 suggested future land-cover changes under the scenario conditions. For Madun reservoir in Gyeonggi-do, total decrease amount of paddy area was a similar amount of 'Base demand scenario' of Water Vision 2020 published by MLTMA (Ministry of Land, Transport and Maritime Affairs), while the decrease amounts of paddy areas in other sites were less than the amount of 'High demand scenario' of Water Vision 2020. Under A1B scenario, all the land-cover results showed only slight changes in irrigation areas of agricultural reservoirs and most of agricultural reservoir watersheds will be increased continuously for forest areas. This approach could be useful for evaluating and simulating agricultural water demand in relation to land-use changes.

Impact of Changes in Climate and Land Use/Land Cover Change Under Climate Change Scenario on Streamflow in the Basin (기후변화 시나리오하의 기후 및 토지피복 변화가 유역 내 유출량에 미치는 영향 분석)

  • Kim, Jin Soo;Choi, Chul Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • This study is intended to predict variations in future land use/land cover(LULC) based on the representation concentration pathway(RCP) storyline that is a new climate change scenario and to analyze how future climate and LULC changes under RCP scenario affects streamflow in the basin. This study used climate data under RCP 4.5 and 8.5 and LULC change scenario is created by a model that is developed using storyline of RCP 4.5 and 8.5 and logistic regression(LR). Two scenarios(climate change only and LULC change only) were established. The streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool(SWAT) model. Each scenario showed a significant seasonal variations in streamflow. Climate change showed that it reduced streamflow in summer and autumn while it increased streamflow in spring and winter. Although LULC change little affected streamflow in the basin, the pattern for increasing and decreasing streamflow during wet and dry climate condition was significant. Therefore, it's believed that sustainable water resource policies for flood and drought depending on future LULC are required.

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project (CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Byun, Young-Hwa;Kim, Tae-Jun;Kim, Jin-Won;Kim, Yeon-Hee;Ahn, Joong-Bae;Cha, Dong-Hyun;Min, Seung-Ki;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

Future Projection of Climatic Zone Shifts over Korean Peninsula under the RCP8.5 Scenario using High-definition Digital Agro-climate Maps (상세 전자기후지도를 이용한 미래 한반도 기후대 변화 전망)

  • Yun, Eun-jeong;Kim, Jin-Hee;Moon, Kyung Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • It is predicted that future climate warming will occur, and the subtropical climate zone currently confined to the south coast of Korea will gradually rise north. The shift of climate zone implies a change in area for cultivating crops. This study aimed to evaluate the current and future status of climate zones based on the high-resolution climate data of South Korea to prepare adaptation measures for cultivating crops under changing agricultural climate conditions. First, the climatic maps of South and North Korea were produced by using the high-resolution monthly maximum and minimum daily temperature and monthly cumulative precipitation produced during the past 30 years (1981-2010) covering South and North Korea. Then the climate zones of the Korean Peninsula were classified based on the Köppen climate classification. Second, the changes in climate zones were predicted by using the corrected monthly climate data of the Korean Peninsula (grid resolution 30-270m) based on the RCP8.5 scenario of the Korea Meteorological Administration. Köppen climate classification was applied based on the RCP8.5 scenario, the temperature and precipitation of the Korean Peninsula would continue to increase and the climate would become simpler. It was predicted that the temperate climate, appearing in the southern region of Korea, would be gradually expanded and the most of the Korean Peninsula, excluding some areas of Hamgkyeong and Pyeongan provinces in North Korea, would be classified as a temperate climate zone between 2071 and 2100. The subarctic climate would retreat to the north and the Korean Peninsula would become warmer and wetter in general.

Runoff Analysis of Climate Change Scenario in Gangjung Basin (기후변화 시나리오에 따른 강정천 유역의 유출특성 분석)

  • Lee, Jun-Ho;Yang, Sung-Kee;Kim, Min-Chul
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1649-1656
    • /
    • 2015
  • Jeju Island is the highest rain-prone area in Korea that possesses affluent water resources, but future climate changes are predicted to further increase vulnerabilities as resultant of increasing of extreme events and creating spatial-temporal imbalance in water resources. Therefore, this study aimed to provide basic information to establish a proper water resources management plan by evaluating the effects of climate change on water resources using climate change scenario. Direct runoff ratio for 15 years (2000~2014) was analyzed to be 11~32% (average of 23%), and average direct runoff ratio for the next 86 years (2015~2100) was found as 28%, showing an increase of about 22% compared to the present average direct runoff ratio (23%). To assess the effects of climate change on long-term runoff, monthly runoff variation of future Gangjeong watershed was analyzed by dividing three time periods as follows: Present (2000~2030), Future 1 (2031~2070) and Future 2 (2071~2100). The estimated results showed that average monthly runoff increases in the future and the highest runoff is shown by Future 2. Extreme values has been expected to occur more frequently in the future as compared to the present.

Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia (탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향)

  • Youn-Ah Kim;Jung Choi;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.505-517
    • /
    • 2023
  • This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.