• Title/Summary/Keyword: Climate Energy

Search Result 1,585, Processing Time 0.025 seconds

지구온난화에 의한 가정용 전력에너지의 소비평가 (An Assessment of the Residential Electric Energy Consumption Induced by Global Warming)

  • 임한철;변영화;권영태;전종갑
    • 대기
    • /
    • 제18권1호
    • /
    • pp.33-41
    • /
    • 2008
  • This study provides an impact assesment of climate change on energy consumption, based on active-deal scenario. This approach assumes that the amount of electric energy consumption depends on human spontaneous acts against local (REC) has ben developed by using monthly mean temperature and monthly amount of electric energy consumption in the 6 major cities over the 19-205 period. The statistical model is utilized to estimate the past and future REEC, and to assess the economic benefits and damage in energy consumption sector. For an estimation of the future REEC, climate change scenario, which is generated by National Institute of Meteorological Research, is utilized in this study. According to the model, it is estimated that over the standard period (1999~2005), there might be economic benefits of about 31 bilion Won/year in Seoul due to increasing temperature than in the 1980s. The REC is also predicted to be gradually reduced across the Korean peninsula since the 2020s. These results suggest that Korea will gain economic benefits in the REC sector during the 21st century as temperature increases under global warming scenarios.

우리나라의 기후 변화 영향에 의한 건물 냉난방에너지 수요량 변화의 예측 (Prediction on Variation of Building Heating and Cooling Energy Demand According to the Climate Change Impacts in Korea)

  • 김지혜;김의종;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.789-794
    • /
    • 2006
  • The potential impacts of climate change on heating and cooling energy demand were investigated by means of transient building energy simulations and hourly weather data scenarios for Inchon. Future trends for the 21 st century was assessed based oil climate change scenarios with 7 global climate models(GCMs), We constructed hourly weather data from monthly temperatures and total incident solar radiation ($W/m^2$) and then simulated heating and cooling load by Trnsys 16 for Inchon. For 2004-2080, the selected scenarios made by IPCC foresaw a $3.7-5.8^{\circ}C$rise in mean annual air temperature. In 2004-2080, the annual cooling load for a apartment with internal heat gains increased by 75-165% while the heating load fell by 52-71%. Our analysis showed widely varying shifts in future energy demand depending on the season. Heating costs will significantly decrease whereas more expensive electrical energy will be needed of air conditioning during the summer.

  • PDF

미래 그린 해수담수화 기술 (Future green seawater desalination technologies)

  • 김정빈;홍승관
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

석탄과 반탄화 바이오매스 혼합연료의 가스화 (Gasification of Coal and Torrefied Biomass Mixture)

  • 오건웅;장진영;라호원;서명원;문태영;이재구;윤상준
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.190-199
    • /
    • 2017
  • Air-blown Gasification of coal and torrefied biomass mixture is conducted on fixed-bed gasifier. The various ratio (9:1, 8:2, 7:3) of coal and torrefied biomass mixture are used. The contents of $H_2$, CO in the syngas were increased with gasification temperature. Carbon conversion tend to increase with temperature and equivalence ratio (ER). However, cold gas efficiency showed maximum point in ER range of 0.26-0.36. The torrefied biomass showed highest cold gas efficiency of 67.5% at $934^{\circ}C$, ER 0.36. Gasification of 8:2 mixture showed the highest carbon conversion and cold gas efficiency and synergy effect.

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

신재생에너지와 기후변화에 대한 장기간 인식조사가 갖는 함의 (The Significance of Long-term Perception on Renewable Energy and Climate Change)

  • 안중우
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.117-123
    • /
    • 2018
  • The long-term perception investigation of environment is needed for the persistence of each country's policy on climate change, which is greatly influenced by external factors. Long term data on perception and attitudes of people's thought can be a big data point for climate change and consistent policies can be implemented with the need for public demand. Information on the perception of the general public regarding the environment should be carried out as a basis for the national environmental policy.

Applications of Sugarcane by-products to mitigate climate change in Ethiopia

  • Habte, Lulit;Mulatu, Dure;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제27권3호
    • /
    • pp.36-40
    • /
    • 2018
  • Climate change is one of the major issues in both the developed and developing world. Greenhouse gas (GHG) emission is one of the implications for climate change. It is increasing rapidly. Although the emission is much less when compared to the rest of the world, Ethiopia has also faced this global issue. The major source for GHG emission in Ethiopia is agriculture. Therefore, the agriculture sector has to be given more attention in Ethiopia. To overcome the problem, Climate-Resilient Green Economy (CRGE) strategy has been initiated. One way of executing this target is to create a sustainable and environmentally friendly pathway to use agricultural byproducts. Sugarcane is one of the major plants in Ethiopia. Its byproducts are bagasse, molasses, and press mud. Since it is a waste product, it is economical and creates a sustainable and green environment by reducing GHG emissions. Sugarcane byproducts have versatile applications like as fuel, as cement replacing material, as a mitigation for expansive soils, as biosorbent for the treatment of water and wastewater and also as a wood material. However, Ethiopia has not used this byproduct massively as it is readily available. This paper reviews the possible applications of sugarcane byproducts to mitigate climate change.

기후변화와 대기환경의 통합적 관리에 대한 고찰 (A Review of the Integrated Strategy for Climate Change and Air Pollution Management)

  • 송창근;이석조;윤종수
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.805-818
    • /
    • 2011
  • The unequivocal risk of climate change, the weakness of energy security, and the problem of air quality will be possibly accelerated by the same reason, the enhanced fossil fuel dependancy in the future. It is obvious that greenhouse gases and air pollutants are mainly emitted from same sources. Moreover, greenhouse gases and air pollutants have their adversed impacts on same socio-economical, and environmental sectors. With these regards, several but limited studies have emphasized on the importance of the integrated management of climate change and air quality problem. In this study, we address the current trend of energy consumption and the change of air quality condition. Also the related policies are checked out in order to reduce emissions of greenhouse gases and air pollutants in Korea. By surveying previous studies, it is shown that the cost of climate change actions can be reduced by air quality co-benefits and vis-a-versa. Also the integrated strategy for climate change and air quality is introduced in term of cost-effectiveness and co-benefit.

미래 기후변화에 따른 가정 및 상업 부문 에너지수요 변화 추정 (Estimation of Energy Use in Residential and Commercial Sectors Attributable to Future Climate Change)

  • 정지훈;김주홍;김백민;김재진;유진호;오종열
    • 대기
    • /
    • 제24권4호
    • /
    • pp.515-522
    • /
    • 2014
  • In this study it is attempted to estimate the possible change in energy use for residential and commercial sector in Korea under a future climate change senario. Based on the national energy use and observed temperature data during the period 1991~2010, the optimal base temperature for determining heating and cooling degree days (HDD and CDD) is calculated. Then, net changes in fossil fuel and electricity uses that are statistically linked with a temperature variation are quantified through regression analyses of HDD and CDD against the energy use. Finally, the future projection of energy use is estimated by applying the regression model and future temperature projections by the CMIP5 results under the RCP8.5 scenario. The results indicate that, overall, the net annual energy use will decrease mostly due to a large decrease in the fossil fuel use for heating. However, a clear seasonal contrast in energy use is anticipated in the electricity use; there will be an increase in a warm-season demand for cooling but a decrease in a cold-season demand for heating.

도시 및 기후특성이 에너지 회복력에 미치는 영향 - 정전발생시간을 중심으로 - (The Effect of Urban and Climate Characteristics on Energy Resilience - Focusing on Blackout Time -)

  • 이동성;문태훈
    • 국토계획
    • /
    • 제54권4호
    • /
    • pp.122-130
    • /
    • 2019
  • The purpose of this study is to analyze effect of climate and urban factors on energy resilience, and to explore policy alternatives to strengthen resilience of energy system. For this purpose, this study used extensive literature review on resilience studies and multiple regression analysis. In this study, blackout time was set as a dependent variable. And the independent variables were divided into climate and urban (robustness, countermeasure capacity) characteristics. As a result of the analysis, in terms of climate characteristics, maximum wind speed and cooling/heating degree-day have statistically significant impact on blackout time. With regard to urban characteristics, number of consumer, ratio of deteriorated housing and coast dummy variables have statistically significant impact on blackout time. And the ratio of government employees and road ratio were found to be the most influencing factors to shorten time taken to restore original level of electricity supply. Based on the study results, several policy suggestions to improve energy resilience were made such as continuous management of vulnerable areas and strengthening disaster response services. This study only considered engineering dimension of resilience. Further studies need to be approached on ecological & social-ecological dimension.