• 제목/요약/키워드: Click Reaction

검색결과 42건 처리시간 0.016초

고분자 가교반응 시스템 (Crosslinking reaction system of polymers)

  • 고종성
    • 한국응용과학기술학회지
    • /
    • 제29권1호
    • /
    • pp.19-32
    • /
    • 2012
  • 가교에 관한 리뷰논문으로 특허의 다수는 의료용이다. 조직공학용 지지체나 약물전달용 매체로 쓰이는 고분자의 가교는 세포 무독성, 제 자리 겔 형성성이 있는 가교반응을 중시하고 있다. 가교를 탄성률, 내약품성, 내열성의 증대 목적 외에 가교부위에 금속 흡착성, 방오성, 항균성, 이온교환성 등의 기능을 부여하고 있다. 환경의 자극에 응답하는 스마트 가교, 환경을 고려한 광 가교, 물리적 가교, 효소가교, 천연물 가교, 수성가교가 연구되고 있다. 120세 수명을 목표로 의용재료의 발전에 고분자 소재의 개발도 필수적이다. 가교를 통한 고분자의 기능성 부여 및 물성 강화도 더욱 섬세하게 될 것이다. 고분자 가교물 중의 중요한 분야를 점하는 히드로젤은 주사용 제자리 겔 형성성의 개선 방향으로 전개될 것이다. 코팅용 고분자 가교제는 작업자, 작업환경을 고려하여 저독성-무독성의 가교제, 낮은 에너지에서 가교되는 에너지 절약형 가교제가 개발될 것이다.

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.