• Title/Summary/Keyword: Clearance angle

Search Result 186, Processing Time 0.034 seconds

Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle (엔드밀 가공 시 여유각을 고려한 가공특성)

  • 박정남;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

Machining Characteristics in High Speed Endmill Operation considering Clearance angle (고속용 엔드밀 가공 시 여유각을 고려한 가공특성)

  • 고성림;박정남;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.22-25
    • /
    • 2002
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed endmilling. The tool geometry parameters and cutting process have complex relationship. In order to explain the effect of clearance angle and exist the optimal clearance angle according to the diameter, Using various tool with different clearance angle, numerous cutting tests (cutting force, surface accuracy, too life) was undertaken to show the relationship between clearance angle and cutting process.

  • PDF

Development of Design and Manufacturing Technology for Endmills (엔드밀 설계 및 제작 기술에 관한 연구)

  • 고성림;김용현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The geometry parameter of tool such as rake angle and clearance angle is defined clearly to solve the difference in communication between design and measurement stage. Using the developed simulation program, wheel is properly determined and end mill can be manufactured accurately. The performance test with well defined end mill provides sufficient information to decide optimal geometry. For machining hardened steel, end mills are designed and manufactured. Optimal rake angle and clearance angle is obtained from performance test. A specific software for automatic end mill production is developed far simulation and fur generation of NC code as Cad/CAM system.

  • PDF

Effect of Cutting Condition on the Tool Wear in Turning of the Presintered Low Purity Alumina Ceramics (저순도 알루미나 세라믹 예비소결체의 선삭에서 공구 마멸에 미치는 절삭 조건의 영향)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.14-21
    • /
    • 2010
  • In this study, presintered low purity alumina ceramics were machined with various tools to clarify the effects of the tool material, cutting condition and tool geometry on machinability. The main conclusions obtained were as follows. (a)The wear of tungsten carbide tool becomes smaller with the increase of the feed and clearance angle, and with the decrease of rake angle, especially exhibiting considerably smaller wear with both the decrease of rake angle and the increase of clearance angle. (b) So far as turning the ceramic presintered at low temperature, the diamond tool shows the best performance with higher feed. (c) The effect on the tool wear of the feed, clearance angle and rake angle becomes smaller in turning the ceramic presintered at higher temperature. (d) The tool wear is not severely affected by the depth of cut.

A Study on the Deviation of Bucket Behavior Considering the Effect of Clearance in the Excavator (굴삭기 상부작업체에서 틈새에 의한 버켓의 거동 편차에 대한 연구)

  • Shin, Dae Young;Kang, Tae Gon
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2019
  • Bucket trajectory is crucial regarding precision work with an excavator. In general, the bucket trajectory deviation is determined by the machining deviation of the frame, driving deviation of the driving hydraulic cylinder, clearance in the joints, and deformation of the structure. This paper investigated the relationship between the respective clearance in joints and the trajectory deviation of the bucket at the finishing work of the ditching for a 20-ton excavator. As a result, the larger the clearance, the larger deviation is increased at trajectory. However, it was found that the deviation of the rotation angle and displacement of the bucket was limited and the size of clearance does not affect closely on the contact angle of the pin shaft.

Experimental Study on the Surface Pressure Characteristics of a Rear-Guider for the Various Design Factors of a Cross-Flow Fan (관류홴의 설계인자 변화에 따른 리어가이더의 표면압력 특성에 관한 실험적 연구)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.50-57
    • /
    • 2005
  • A cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this paper is to investigate the effects of a rear-guider and a stabilizer on the surface pressure of a rear-guider in an indoor room air-conditioner using a cross-flow fan. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. The operating condition of a cross-flow fan was controlled by changing the static pressure and flowrate using a fan tester. All surface pressures of a rear-guider are differently distributed according to the stabilizer setup angle, and show a zero value in the flow coefficient, ${\Phi}{\fallingdotseq}0.5$ only of a stabilizer setup angle, $45^{\circ}$. Especially, they show a big negative value in the expansion angle larger than $34^{\circ}$ regardless of a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle. On the other hand, surface pressures for various stabilizer cutoff clearances are better than those for various rear-guider clearances.

  • PDF

Machining Characteristics of Micro-EDMed Holes According to Dielectric Fluid, Capacitance and Ultrasonic Vibrations (방전가공을 이용한 미세구멍 가공 시 절연액, 축전용량과 초음파 부가에 따른 가공특성)

  • Seo, Dong-Woo;Yi, Sang-Min;Chu, Chong-Nam;Park, Min-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.42-49
    • /
    • 2007
  • When micro holes are machined by EDM, machining characteristics of machined holes are changed according to the machining conditions. Typical machining conditions are the kind of dielectric fluids, capacitance and ultrasonic vibrations. They influence electrode wear, machining time, radial clearance and taper angle. In this paper, machined holes whose depths are 300, 500, $1000\;{\mu}m$ are observed for each machining conditions. Using deionized water as a dielectric fluid makes electrode wear small, machining time short, radial clearance large and taper angle small. High capacitance makes electrode wear high. Ultrasonic vibrations make electrode wear large, machining time short, radial clearance small and taper angle small. From the results of experiments, the optimal machining conditions were obtained to machine highly qualified micro holes.

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (II) - Variation of Leakage Vortex with Tip Clearance and Attack Angle - (축류 회전차 익말단 틈새유동에 대한 수치해석(II) - 틈새변화 및 영각변화에 따른 누설와류의 변화 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1106-1112
    • /
    • 1999
  • Substantial losses behind axial flow rotor are generated by the wake, various vortices in the hub region and the tip leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip is one of the main causes of the reduction of performance, generation of noise and aerodynamic vibration in downstream. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The numerical technique was based on SIMPLE algorithm using standard $k-{\varepsilon}$ model(WFM) and Launder & Sharma's Low Reynolds Number $k-{\varepsilon}$ model(LRN). Through calculations, the effects of tip clearance and attack angle on the 3-dimensional flow fileds behind a rotor and leakage flow/vortex were investigated. The presence of tip leakage vortex, loci of vortex center and its behavior behind the rotor for various tip clearances and attack angles was described well by calculation.

A Study on the Burr Height in Shearing Steel Sheet for Automobile Parts (자동차용 강판의 전단작업시 발생하는 버어에 관한 연구)

  • Ko, D.L.;Jung, D.W.;Kim, J.M.;Lee, K.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.47-52
    • /
    • 2007
  • Punching, blanking, trimming and slitting are widely used in shearing processes in sheet metal forming of automotive parts. In this paper the effects of clearance, cutting angle and tool sharpness on the formation of burr were investigated by experimental method in shearing processes of steel sheets, SPCEN and SPRC35E. The amount of burr and the shapes of burr were different between two kinds of steel sheets. It has been shown that the cutting angle of the shearing blade had no effects on the height of burr when the clearance was below the 10% of the steel sheet thickness, and also that the height and shape of burr were not affected by the cutting angle when the wear of shearing blade was below the 10% of the steel sheet thickness. It was known that there had been existing the critical clearance of 10 to 15% for the tested steel sheet, SPCEN and SPRC35E.

  • PDF

The Development of High Wind Velocity/High Drying Time Hair Dryer using Computational Fluid Dynamics Analysis Method (전산유체역학(CFD) 분석법을 이용한 High Wind Velocity/High Drying Time 헤어드라이어의 개발)

  • Park, Soo-Hong;Park, Jong-Chan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.262-267
    • /
    • 2016
  • This paper describes a design of a hair drier to improve its performance. the performance of the hair drier can be improved by increasing the wind velocity of its discharge port. the design of the hair drier is accomplished by using the CFD. the validity of design results were verified by comparison with the dry change of the hair drier. In this paper, the initial condition of the applied hair drier is as follows, the number of the blade is 9, the diameter of the suction port is 40[mm], the tip clearance is 12.5[mm], the con angle is $28.5^{\circ}$ and the fan angle is 27.5R. From design results, the enhanced condition of the hair drier can be obtained as follows, the number of the blade is 3, the diameter of the suction port is 50[mm], the tip clearance is 10.5[mm], the con angle is $21.5^{\circ}$ and the fan angle is 75R. At the enhanced condition of the hair drier, the wind velocity of the hair drier is 29[%] increase, and the dry time is 40[%] increase compare to the initial condition of the hair drier.