• Title/Summary/Keyword: Cleaning mechanism

Search Result 109, Processing Time 0.028 seconds

Environmentally-Conscious Cleaning System for End-of-Life CRT (환경친화적 폐브라운관 세정시스템 개발)

  • 송준엽;강재훈;허성필;이화조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.126-134
    • /
    • 2003
  • In this study, we suggest a environmentally-conscious and dry cleaning process mechanism for the more useful recycling of end-of-life CRT, and also develop a prototype cleaning system to verify the faulty of the designed mechanism. This system accommodates the specifications of 14∼32" end-of-life CRT. In experimental result, it is expected that the developed system improve the productivity up to 10% and decrease the loss rate of cleaning glass 3∼4 times than the glass blasting methods.

Effect of PVA Brush Contamination on Post-CMP Cleaning Performance (Post-CMP Cleaning에서 PVA 브러시 오염이 세정 효율에 미치는 영향)

  • Cho, Han-Chul;Yuh, Min-Jong;Kim, Suk-Joo;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.114-118
    • /
    • 2009
  • PVA (polyvinyl alcohol) brush cleaning method is a typical cleaning method for semiconductor cleaning process especially post-CMP cleaning. PVA brush contacts with the wafer surface and abrasive particle, generating the contact rotational torque of the brush, which is the removal mechanism. The brush rotational torque can overcome theoretically the adhesion force generated between the abrasive particle and wafer by zeta potential. However, after CMP (chemical mechanical polishing) process, many particles remained on the wafer because the brush was contaminated in previous post-CMP cleaning step. The abrasive particle on the brush redeposits to the wafer. The level of the brush contamination increased according to the cleaning run time. After cleaning the brush, the level of wafer contamination dramatically decreased. Therefore, the brush cleanliness effect on the cleaning performance and it is important for the brush to be maintained clearly.

Development of Robot Mechanism for Cleaning and Inspection of Live Line Insulator (송전선로 활선 애자 청소 및 점검용 로봇 기구부의 개발)

  • Park, Joon-Young;Cho, Byung-Hak;Byun, Seung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.421-423
    • /
    • 2005
  • Power transmission lines have been playing a key role as the mainstay of national industry. When a power failure occurs, it can have severe effects on national security as well as national industry and economy. In this paper, we consider an insulator failure, which is one of the main causes of such a power failure. In spite of its importance, however, a shortage of manpower in the insulator maintenance field is getting more serious due to working environments with a high voltage and a high place. For this reason, a new active maintenance technique using a robot system is required to prevent such an insulator failure. In this paper, a new robot mechanism for insulator cleaning and inspection was developed. We confirmed its effectiveness through experiments.

  • PDF

Investigation of PEG(polyethyleneglycol) Removal Mechanism during UV/O2 Gas Phase Cleaning for Silicon Technology (UV/O2 가스상 세정을 이용한 실리콘 웨이퍼상의 PEG 반응기구의 관찰)

  • Kwon, Sung-Ku;Kim, Do-Hyun;Kim, Ki-Dong;Lee, Seung-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.985-993
    • /
    • 2006
  • An experiment to find out the removal mechanism of PEG(polyethyleneglycol) by using UV-enhanced $O_2$ GPC (gas phase cleaning) at low substrate temperature below $200^{\circ}C$ was executed under various process conditions, such as substrate temperature, UV exposure, and $O_2$ gas. The possibility of using $UV/O_2$ GPC as a low-temperature in-situ cleaning tool for organic removal was confirmed by the removal of a PEG film with a thickness of about 200 nm within 150 sec at a substrate temperature of $200^{\circ}C$. Synergistic effects by combining photo-dissociation and photo oxidation can only remove the entire PEG film without residues within experimental splits. In $UV/O_2$ GPC with substrate temperatures higher than the glass transition temperature, the substantial increase in the PEG removal rate can be explained by surface-wave formation. The photo-dissociation of PEG film by UV exposure results in the formation of end aldehyde by dissociation of back-bone chain and direct decomposition of light molecules. The role of oxygen is forming peroxide radicals and/or terminating the dis-proportionation reaction by forming peroxide.

A Study of Minute Particles' Adhesion on a Rough Surface for a Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정을 위한 거친표면 위 미세입자의 점착특성 연구)

  • Seok, Jong-Won;Lee, Seong-Hoon;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • Among a variety of cleaning processes, the cryogenic carbon dioxide ($CO_2$) cleaning has merits because it is highly efficient in removing very fine particles, innoxious to humans and does not produce residuals after the cleaning, which enables us to extend its area of coverage in the semi-conductor fabrication society. However, the cryogenic carbon dioxide cleaning method has some technical research issues in aspect to particles' adhesion and removal. To resolve these issues, performing an analysis for the identification of particle adhesion mechanism is needed. In this study, a research was performed by a theoretical approach. To this end, we extended the G-T (Greenwood-Tripp) model by applying the JKR (Johnson-Kendall-Roberts) and Lennard-Jones potential theories and the statistical characteristics of rough surface to investigate and identify the contact, adhesion and deformation mechanisms of soft or hard particles on the rough substrate. The statistical characteristics of the rough surface were taken into account through the employment of the normal probability distribution function of the asperity peaks on the substrate surface. The effects of surface roughness on the pull-off force for these particles were examined and discussed.

Development of LGP Dry Cleaning Equipment using ESD and Adhesive Roll (ESD와 점착 롤 제진을 이용한 LGP 건식 세정 장치 개발)

  • Ku, Ja-Yl;Jun, SungHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.195-201
    • /
    • 2014
  • In this paper, we developed a LGP(Light Guide Panel) dry cleaning system for particle cleaning using corona discharge and dry adhesive roll. Therefore, we design a cleaning mechanism that can be applied dry adhesive dust removal roll and ESD(electrostatic discharge) by using corona discharge. Also, we design and implementation of equipment, which can loading, unloading and transfer LGP automatically. The developed equipment is dust and particle cleaning experimental results to demonstrate its stability.

Hydraulic Cleaning Effect on Fouling Mechanisms in Pressurized Membrane Water Treatment (가압식 멤브레인 수처리에서 수리학적 세정이 파울링 기작에 미치는 영향)

  • Charfi, Amine;Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.519-527
    • /
    • 2017
  • Membrane fouling is the main issue hindering the expansion of low pressure membrane processes for surface water treatment. Therefore, applying periodic hydraulic cleaning for fouling control should be well optimized. Better understanding of membrane fouling associated with periodic hydraulic cleaning would be useful to optimize membrane cleaning strategies. By comparing experimental permeability data with the classical Hermia blocking laws, this study aims at analyzing membrane fouling and understanding dominant fouling mechanisms occurring when filtering a synthetic surface water solution with a pressurized membrane process during six filtration cycles of 30 min each, separated with cyclic cleaning of 1 min by backwashing and forward flushing separately and combined. When applying single cleaning technique, membrane fouling during the first cycles was controlled by complete blocking mechanism while the last cycles were dominated by cake formation. Nevertheless, when combining cleaning technique better membrane regeneration was obtained and fouling was mainly due to cake formation.

Contact Analysis of a Robotic Cleaning Mechanism Using Soft Tip (소프트 팁을 이용한 로봇 청소 메카니즘의 접촉 해석)

  • Kim Byeong-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.53-55
    • /
    • 2006
  • 본 논문은 청소 로봇 메카니즘을 위한 소프트 팁의 접촉력을 제어하기 위한 방법을 제안한다. 제안한 방법에 사용하면, 어떤 소프트 팁의 기하학적인 탄성 모델을 근거로, 청소작업이 수행되는 동안 소프트 팀에 작용되는 접촉력을 팁의 압축변위 정도에 따라 적절히 판단할 수 있다. 이것을 청소 로봇 메카니즘에 탑재된 매니퓰레이터의 위치제어 변위로 활용함으로써, 소프트 팁의 적절한 접촉상태를 유지하는 것이 가능해진다.

  • PDF