• Title/Summary/Keyword: Cleaning System

Search Result 823, Processing Time 0.027 seconds

Performance Evaluation of Automatic Self-Cleaning Filter System using Twin-Fluid Nozzles for Air Cleaning in the Subway Stations (지하철 공기청정을 위한 2유체노즐형 자동세정 공기청정 시스템 개발에 관한 연구)

  • Ahn, Y.C.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2004
  • The removal of the dusts in the subway stations, tunnels, factories and buildings becomes issue for comfortable indoor and outdoor conditions. There has been used an automatic self-cleaning filter system to collect the dusts. In general, the collected particles are removed by water spray nozzles. The new design for improving the cleaning efficiency of collected dusts and reducing the supplied water is the concept of the plane array of demister filters and the twin-fluid nozzle for mixing compressed air and water in the automatic self-cleaning filter system. Results show that the cleaning efficiency of twin-nozzle filter systems is 99.1%, compared to 47% in the conventional filter system. Therefore the automatic self-cleaning filter system using twin-fluid nozzle filter systems reduces water supplied in the filter system, and increases cleaning efficiency and drying efficiency.

  • PDF

Development of Cleaning Module and Operating System of Underwater Robot for Ship Hull Cleaning (선저 청소용 수중로봇의 청소 모듈 및 제어 시스템 개발)

  • Choi, Hyeung-Sik;Kwon, Kyoung-Youb;Chung, Koo-Rack;Seo, Joo-No;Kang, Hyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.553-561
    • /
    • 2009
  • This paper presents development of ROV-type underwater robot capable of cleaning ship hull in automatic mode. The purpose of developing this robot is for underwater cleaning to secure the safety of divers who inspect and clean the ship hull. The robot consists of the cleaning system with rotating brush mechanism, a car-like driving mechanism, inspection system using video, and overall control system for underwater communication and operation. In this paper, we present overall design process of the cleaning system and operating system and technical contents of the overall control system for the underwater cleaning robot.

Design of Cleaning Robot System Using Reconfigurable Heterogeneous Modular Architecture (모듈화 구조 기반의 청소 로봇 시스템 설계)

  • Ahn, Ho-Seok;Sa, In-Kyu;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.153-155
    • /
    • 2009
  • Cleaning robot system consists of four parts; navigation system for moving of robot, cleaning system, power system, and main system with cleaning algorithm. Navigation system is the most expensive part because it has motors and sensors which is high price. Navigation system is also essential to service robot system, but user should buy two systems which are service robot system and cleaning robot system. If it is possible to share navigation system, user can save money. In this paper, we design the cleaning robot system based on modular architecture.

  • PDF

Automatic Cleaning Algorithm of Asset Data for Transmission Cable (지중 송전케이블 자산데이터의 자동 정제 알고리즘 개발연구)

  • Hwang, Jae-Sang;Mun, Sung-Duk;Kim, Tae-Joon;Kim, Kang-Sik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.79-84
    • /
    • 2021
  • The fundamental element to be kept for big data analysis, artificial intelligence technologies and asset management system is a data quality, which could directly affect the entire system reliability. For this reason, the momentum of data cleaning works is recently increased and data cleaning methods have been investigating around the world. In the field of electric power, however, asset data cleaning methods have not been fully determined therefore, automatic cleaning algorithm of asset data for transmission cables has been studied in this paper. Cleaning algorithm is composed of missing data treatment and outlier data one. Rule-based and expert opinion based cleaning methods are converged and utilized for these dirty data.

Fabrication of Ozone Bubble Cleaning System and its Application to Clean Silicon Wafers of a Solar Cell

  • Yoon, J.K.;Lee, Sang Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.295-298
    • /
    • 2015
  • Ozone micro-bubble cleaning system was designed, and made to develop a unique technique to clean wafers by using ozone micro-bubbles. The ozone micro-bubble cleaning system consisted of loading, cleaning, rinsing, drying and un-loading zones, respectively. In case of the cleaning the silicon wafers of a solar cell, more than 99 % of cleaning efficiency was obtained by dipping the wafers at 10 ppm of ozone for 10 minutes. Both of long cleaning time and high ozone concentration in the wet-solution with ozone micro-bubbles reduced cleaning efficiency because of the re-sorption of debris. The cleaning technique by ozone micro-bubbles can be also applied to various wafers for an ingot and LED as an eco-friendly method.

Design and Development of Fluidized Bed Cleaning System for on Heat Treatment Parts (I) - Design and Development the Experimental Fluidized Bed Cleaner and Experiments on its Cleaning Efficiency - (유동층을 이용한 열처리부품의 세정 시스템 설계 및 개발 (I) -유동층 이용 세정 실험장치 설계, 개발 및 실험 -)

  • Kim C.S.;Kim K.D.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.376-384
    • /
    • 2006
  • This study was conducted to perform for comparative analysis of the cleaning efficiency on 3 kinds of cleaning liquid state, 3 steps of cleaning temperature $(45^{\circ}C,\;60^{\circ}C,\;70^{\circ}C,\;)$ and 6 steps of cleaning time (2.5, 5, 7.5, 10, 12.5, 15 minute). 3 kinds of cleaning liquid state are the non fluidized bed, liquid fluidized bed and liquid/solid fluidized bed. UV spectrophotometer was used in estimation of cleaning efficiency, which it is experimental equipment using the absorptiometric analysis method. Cleaning efficiency by cleaning time was increase from 2.5 minutes to 15 minutes, liquid/siolid fluidized bed was indicated the highest cleaning efficiency among the 3 kinds of cleaning liquid state and $70^{\circ}C$ of cleaning temperature at liquid/solid fluidized bed was indicated the highest cleaning efficiency as 98% among the 3 steps of cleaning temperature.

A Study on Ozone Micro Bubble Effects for Solar Cell Wafer Cleaning (신개념 태양전지 세정용 오존마이크로 버블에 관한 연구)

  • Yoon, Jong-Kuk;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.94-98
    • /
    • 2012
  • The behavior of ozone micro bubble cleaning system was investigated to evaluate the solution as a new method of solar cell wafer cleaning in comparison with former conventional RCA cleaning. We have developed the ozone dissolution system in the ozonated water for more efficient cleaning conditions. The optimized cleaning conditions for solar cell wafer process were 10 ppm of ozone concentration and 12 minutes in cleaning periods, respectively. We have confirmed the cleaning reliability and cell efficiencies after ozone micro bubble cleaning. Using this new cleaning technology, it was possible to obtain higher efficiency, higher productivity, and fast tact time for applying cleaning in the fields on bare ingot wafer, LED wafers as well as the solar cell wafer.

Analysis of Fluid-Structure Interaction of Cleaning System of Micro Drill Bits (마이크로 드릴비트 세척시스템의 유체-구조 연성해석)

  • Kuk, Youn-Ho;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • The micro drill bit automatic regrinding in-line system is a system that refurbishes drill bits used in a PCB manufacturing process. This system is able to refurbish drill bits with a minimum size of ø0.15-0.075mm that have previously been discarded. Beyond the conventional manual cleaning process using ultrasound, this system adopts a water jet cleaning system, making it capable of cleaning drill bits with a minimum size of ø0.15-0.075mm. This paper analyses various contact pressures applied to the surface of drill bits depending on the shooting pressure of the cleaning device and fluid velocity in order to optimize the nozzle location and to detect structural instability caused by the contact pressures.

RESULTS AND FURTHER DEVELOPMENT OF AN AUTOMATIC MILKING SYSTEM

  • Toth, L.;Bak, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.779-790
    • /
    • 1993
  • A prototype of the feeding-milking robot was developed in the Hungarian Institute of Agricultural Engineering in 1988-89. Before starting with the operation tests the cleaning system had to be elaborated . The cleaning system has two parts. Those are the complete cleaning of the system, producing a practically sterile state, as well as flushing through the milking device between milking of two cows. Separate electronic sensor development was necessary for both system which can connect to the control system of the robot. To clean the system pneumatic air input was applied. As an effect of the local adjustment of the electronic control system optimal flow conditions can be formed what is more favourable comparing to the earlier solutions of cleaning due to the mechanical effect. In the flushing through overpressure air is applied. The air and the cleaning liquid input duration can be adjusted to the local conditions. The electronic control unit can be connected to the electric ircuits of robot.

  • PDF

Analysis of Monitoring and Recycling Technology Technologies of Cleaning Solution and Rinse Water in the Aqeous Cleaning System (수계 세정시스템의 세정액/헹굼수의 모니터링 및 재활용 기술 분석)

  • Han, Sang-Won;Lee, Ho Yeoul;Bae, Jae-Heum;Ryu, Jong-Hoon;Park, Byeong-Deog;Jeon, Sung-Duk
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.225-242
    • /
    • 2001
  • Cleaning process is necessary for machining parts or manufacturing finished products in the industry. Most of domestic and foreign companies are now trying to adopt environment-friendly aqueous cleaning agents instead of CFC-113 and 1,1,1-TCE which are ozone-depleting substances. However, the aqueous cleaning system has a disadvantage due to its generation of lots of waste water since the system utilizes water in cleaning and rinsing processes. Thus, it is very important that monitoring and recycling technologies of the cleaning solution and the rinse water should be introduced in the aqueous cleaning system in order to minimize generation of waste water and to maintain its cleaning performance for a quite long time. In this paper, the cleaning agents utilized in the aqueous cleaning system and cutting oils which are main contaminants were examined and analyzed. And the monitoring and recycling technologies of the aqueous cleaning system which can be employed in the industrial fields were also reviewed and evaluated.

  • PDF