• Title/Summary/Keyword: Cleaning Method

Search Result 713, Processing Time 0.041 seconds

Evaluation of Washing Method for Sterilization of Gel Container for Ultrasound Inspection (초음파검사용 젤 용기의 제균을 위한 세척방법 평가)

  • Lee, Hee-Jeong;Lee, Suk-Jun;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.241-247
    • /
    • 2018
  • The purpose of this study was to compare the ultrasound gel container washing methods for the sterilization of contaminants and to find the useful methods for the prevention of infection caused by the ultrasonic gel containers. In this experiment, a 250 mL ultrasonic gel container was used, and the ultrasonic gel used was a non-sterile gel (ECO GEL 99, SeungWon Medical, Korea). In order to evaluate the degree of contamination, new 250 mL 15 containers were divided into 5 groups to perform five types of washing by no treatment, washing with water, washing with soap, washing with bottle cleaner and high disinfection level washing. After the washing process, filled the gel container with gel and after 2 weeks, the number of colonies in the gel container was sampled repeatedly twice in the same ultrasonic laboratory and compared before and after washing. As a result of among the five cleaning methods used in this study, 87.2% and 88.9% of the soapy water washing (p = 0.028) and high level washing (p = 0.027) showed significant bacterial reduction rates, respectively. Our findings conclusively an ultrasonic gel container cleaning method for removing contaminants has been found to be an effective sterilization method at a low cost with a soapy water cleaning method. Therefore, it is expected that it will be helpful to prevent the infection caused by the ultrasonic gel container by suggesting the sterilization cleaning method that is practically useful in this study.

Cleaning Noises from Time Series Data with Memory Effects

  • Cho, Jae-Han;Lee, Lee-Sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2020
  • The development process of deep learning is an iterative task that requires a lot of manual work. Among the steps in the development process, pre-processing of learning data is a very costly task, and is a step that significantly affects the learning results. In the early days of AI's algorithm research, learning data in the form of public DB provided mainly by data scientists were used. The learning data collected in the real environment is mostly the operational data of the sensors and inevitably contains various noises. Accordingly, various data cleaning frameworks and methods for removing noises have been studied. In this paper, we proposed a method for detecting and removing noises from time-series data, such as sensor data, that can occur in the IoT environment. In this method, the linear regression method is used so that the system repeatedly finds noises and provides data that can replace them to clean the learning data. In order to verify the effectiveness of the proposed method, a simulation method was proposed, and a method of determining factors for obtaining optimal cleaning results was proposed.

A Development of Home Mess-Cleanup Robot with Entertainment Function

  • Kim, Seung-Woo;Cha, Hyun-Koo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1444-1447
    • /
    • 2004
  • The vacuum-cleaner had made the burden of house chore lighten but the operation labour of a vacuum-cleaner had been so severe. Recently, the cleaning robot was producted to perfectly solve the cleaning labour of a house but it also was not successful because it still had a problem of mess-cleaning, which is the clean-up of big trash and the arrangement of newspapers, clothes, etc. The cleaning robot is to just vacuum dust and small trash and has no function to arrange and take away before the automatic vacuum-cleaning. For this reason, the market for the cleaning robot is not yet built up. So, we need a design method and technological algorithm of new automatic machine to solve the problem of mess-cleanup in house. In this paper, a Home Mess-Cleanup Robot(HMR), which has a practical function of the automatic mess-cleanup, is developed. It need functions of agile automatic navigation, novel manipulation system for mess-cleanup. The automatic navigation system has to be controlled for the full scanning of living room, to recognize the absolute position and orientation of the self, the precise tracking of the desired path, and to distinguish the mess object to clean-up from obstacle object to just avoid. The manipulation system, which is not needed in the vacuum-cleaning robot, must have the functions, how to distinguish big trash to clean from mess objects to arrange, how to grasp in according to the form of mess objects, how to move to the destination in according to mess objects and arrange them. Then, it should be an intelligent system so that the mess cleaning task can be autonomously performed in a wide variety of situations and environments. It need to also has the entertainment functions for the good communication between the human and HMR. Therefore, the Home Mess-cleanup Robot with Entertainmental Human Interface is developed in this paper. Finally, the good performance of the designed machine, HMR'4, is confirmed through the results of the mess clean-up and arrangement.

  • PDF

Synthesis and Evaluation of New Nonflammable Cleaning Agents (난연성 세정제의 합성 및 평가에 관한 연구)

  • Kim, Ah Na;Yu, Young;Kim, Seok Chan
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.184-188
    • /
    • 2013
  • To increase flash point which is related to flammability, seven unprecedented new cleaning agents containing fluoride atoms have been invented. These newly synthesized cleaning agents's physical properties which were conducted by Korea Institute of Petroleum Management by using a standard method showed excellent values. Particularly, flash point of newly synthetic cleaning agents is more higher than that of fluoride free compound. A specimen for cleaning ability was prepared by cutting in $60mm{\times}40mm$ size of stainless steel plate. The surface of the above specimens was applied with four kinds of contaminants, such as paraffin based drawing oil, flux abietic acid, water-insoluble cutting oil, and lubricating oil. Contaminated specimens were immersed in new compounds (1-7) for 1 to 5 minutes to dissolve oil in the cleaning agent. Although the data indicate that all compounds (1-7) exhibit lower cleaning ability toward cutting oil, it is observed that in the case of the present study more than 80% of pollutants on the surface were almost removed within 5 minutes.

A Study on Implementation of Ubiquitous Home Mess-Cleanup Robot (유비쿼터스 홈 메스클린업 로봇의 구현에 관한 연구)

  • Cha Hyun-Koo;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1011-1019
    • /
    • 2005
  • In this paper, Ubiquitous Home Mess-Cleanup Robot(UHMR), which has a practical function of the automatic mess-cleanup, is developed. The vacuum-cleaner had made the burden of house chore lighten but the operation labour of a vacuum-cleaner had been so severe. Recently, the cleaning robot was producted to perfectly solve the cleaning labour of a house but it also was not successful because it still had a problem of mess-cleaning, which was the clean-up of big trash and the arrangement of newspapers, clothes, etc. The cleaning robot is to just vacuum dust and small trash but has no function to arrange and take away before the automatic vacuum-cleaning. For this reason, the market for the cleaning robot is not yet built up. So, we need a design method and technological algorithm of new automatic machine to solve the problem of mess-cleanup in house. It needs functions of agile automatic navigation, novel manipulation system for mess-cleanup. The automatic navigation system has to be controlled for the full scanning of living room, to recognize the absolute position and orientation of tile self, the precise tracking of the desired path, and to distinguish the mess object to clean-up from obstacle object to just avoid. The manipulate,, which is not needed in the vacuum-cleaning robot, must have the functions, how to distinguish big trash to clean from mess objects to arrange, how to grasp in according to the form of mess objects, how to move to the destination in according to mess objects and arrange them. We use the RFID system to solve the problems in this paper and propose the reading algorithm of RFID tags installed in indoor objects and environments. Then, it should be an intelligent system so that the mess cleaning task can be autonomously performed in a wide variety of situations and environments. It needs to also has the entertainment functions for the good communication between the human and UHMR. Finally, the good performance of the designed UHMR is confirmed through the results of the mess clean-up and arrangement.

The Sterilization Effectiveness for Bacterial Contamination by Cleaning Methods in the Glasses for Vision Correction (시력교정용 안경의 세척 법에 따른 오염 균의 제균 효과)

  • Back, Seung-Sun;Kim, Hyun-Kyung;Lee, Kyu-Byung;Lee, Hyun-Joo;Kim, Heung-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • Purpose: This research was to evaluate the sterilization effectiveness for bacterial contamination by general cleaning method of glasses for vision correction. Methods: From 82 eyeglass wearers the number of bacteria before and after cleaning was counted to check the status of the eradication. Results: The results after ultrasonic cleaning by using the tap water did not showed change of bacterial species. Ultrasonic cleaning using the 70% rubbing alcohol showed cleaning of 46.2% of bacteria. Ultrasonic cleaning using the 70% rubbing alcohol after brushing with general detergent showed clearing of 85.7% of bacteria. Conclusions: When glasses were brushed with a detergent, opportunities infectious bacteria in glasses for vision correction were removed effectively. These results can be suggested as a guideline for management of clean glasses.

A Development of Home Mess-Cleanup Robot

  • Cha, Hyun-Koo;Jang, Kyung-Jun;Im, Chan-Young;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1612-1616
    • /
    • 2005
  • In this paper, a Home Mess-Cleanup Robot(HMR), which has a practical function of the automatic mess-cleanup, is developed. The vacuum-cleaner had made the burden of house chore lighten but the operation labour of a vacuum-cleaner had been so severe. Recently, the cleaning robot was producted to perfectly solve the cleaning labour of a house but it also was not successful because it still had a problem of mess-cleaning, which was the clean-up of big trash and the arrangement of newspapers, clothes, etc. The cleaning robot is to just vacuum dust and small trash but has no function to arrange and take away before the automatic vacuum-cleaning. For this reason, the market for the cleaning robot is not yet built up. So, we need a design method and technological algorithm of new automatic machine to solve the problem of mess-cleanup in house. It needs functions of agile automatic navigation, novel manipulation system for mess-cleanup. The automatic navigation system has to be controlled for the full scanning of living room, to recognize the absolute position and orientation of the self, the precise tracking of the desired path, and to distinguish the mess object to clean-up from obstacle object to just avoid. The manipulator, which is not needed in the vacuum-cleaning robot, must have the functions, how to distinguish big trash to clean from mess objects to arrange, how to grasp in according to the form of mess objects, how to move to the destination in according to mess objects and arrange them. We use the RFID system to solve the problems in this paper and propose the reading algorithm of RFID tags installed in indoor objects and environments. Then, it should be an intelligent system so that the mess cleaning task can be autonomously performed in a wide variety of situations and environments. It needs to also has the entertainment functions for the good communication between the human and HMR. Finally, the good performance of the designed HMR is confirmed through the results of the mess clean-up and arrangement.

  • PDF

Cleaning with Organic Solvent (유기용제에 의한 탈지세정 (도장전처리로써의))

  • 죽내절삼
    • Proceedings of the Korean Professional Engineer Association Conference
    • /
    • 1984.03a
    • /
    • pp.52-60
    • /
    • 1984
  • As far as we handle industrial products, the painting process is prerequisite; and the preparatory treatment of materials is, therefore, indispensable to the above process. However, it is a matter for regret that people are liable to overlook the importance the treatment of materials at the preparatory stage, giving themselves up to the surface of finished goods. The preparatory treatment of materials is like backstage personnel (operations) in dramatic performance; the performance cannot be successful without the support of backstage operations in surface treatment. The various methods which are being applied widely as preparatory treatment are as follow: (1) the method by using hand tools such as grinders, etc. (2) the method with blasting (3) the method with chemical coating (4) the method by getting rid of fatty substance with organic solvent The methods No. 1 and No. 2 are in use mainly for larger structures, and those No. 3 and No. 4, either singly or combined, are applied for mass-produced, smaller items (acid cleaning is applied for getting rid of rust, as the case may be). The method No. 3 is used mainly as anti-rust by forming zinc phosphate film on the surface of steel plate or enhancing the bonding power of paints by taking advantage of irregular surfaces of films. Recently are no the market steel plates treated directly with film-coating by omitting the process No. 3. Furthermore, those goods painted include not only nonferrous goods but plastics and elastomer. The present discourse describes the cleaning process by using the steam of organic acid, picked up from among No. 4, and its equipment applied.

  • PDF