• Title/Summary/Keyword: Clean water

Search Result 1,007, Processing Time 0.029 seconds

Electrolytic Hydrogen Production Using Solution Processed CIGS thin Film Solar Cells (용액 공정 CIGS 박막 태양 전지를 이용한 물 분해 수소 생산)

  • Jeon, Hyo Sang;Park, Se Jin;Min, Byoung Koun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.282-287
    • /
    • 2013
  • Hydrogen production from water using solar energy is attractive way to obtain clean energy resource. Among the various solar-to-hydrogen production techniques, a combination of a photovoltaic and an electrolytic cell is one of the most promising techniques in term of stability and efficiency. In this study, we show successful fabrication of precursor solution processed CIGS thin film solar cells which can generate high voltage. In addition, CIGS thin film solar cell modules producing over 2V of open circuit voltage were fabricated by connecting three single cells in series, which are applicable to water electrolysis. The operating current and voltage during water electrolysis was measured to be 4.23mA and 1.59V, respectively, and solar to hydrogen efficiency was estimated to be 3.9%.

Evaluation of brine reuse on salting of chinese cabbage using electrochemical process (전기화학적 처리에 의한 배추 절임염수 재이용 가능성 평가)

  • Jung, Heesuk;Lee, Eunsil;Han, Seongkuk;Han, Eungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.541-548
    • /
    • 2014
  • The pickling brine generated from the salting process of kimchi production is difficult to treat biologically due to very high content of salt. When pickling brine is treated and discharged, it cannot satisfy the criteria for effluent water quality in clean areas, while resources such as the salt to be recycled and the industrial water are wasted. However, sterilization by ozone, UV and photocatalyst is expensive installation costs and operating costs when considering the small kimchi manufacturers. Therefore there is a need to develop economical process. The study was conducted on the sterilization efficiency of the pickling brine using electrochemical processing. The electrochemical treatment of organic matters has advantages over conventional methods such as active carbon absorption process, chemical oxidation, and biological treatment because the response speed is faster and it does not require expensive, harmful oxidizing agents. This study were performed to examine the possibility of electrochemical treatment for the efficient processing of pickling brine and evaluated the performance of residual chlorine for the microbial sterilization.

The process optimization of in-situ H$_2$ bake and GeH$_4$ clean in low temperature Si epitaxy using design of experiment (저온 Si계 에피 성장기술에서 실험계획법에 의한 in-situ H$_2$ bake 및 GeH$_4$ clean 공정 최적화)

  • 이경수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.54-58
    • /
    • 1994
  • H$_2$ bake and GeH$_4$ clean are used as a in-situ pre-clean method in low temperature Si based epitaxial growth technology using rapid thermal processing chemical vapor deposition (RTPCVD). In this paper, the H$_2$ bake and GeH$_4$ clean processes are optimized for low surface defect density using Taguchi method. In H$_2$ bake process, the epitaxial growth temperature affects dominantly on the surface defect density, and the next affecting factors are H$_2$ bake temperature and rinse time in de-ionised water. In GeH$_4$ clean process, GeH$_4$ clean temperature affects most strongly on the surface defect density, and the minor factor is GeH$_4$flow rate. The optimum process conditions predicted fly Taguchi method agree well with tile experimental data in both in-situ clean processes.