• Title/Summary/Keyword: Clean Coal

Search Result 231, Processing Time 0.025 seconds

A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500MW Class Sub-bituminous Coal-Fired Boiler (500MW급 아역청탄 전소 보일러의 NOx 배출저감에 미치는 SOFA 영향에 관한 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Yoon, Min-Ji;Lee, Byoung-Hwa;Kim, Seung-Mo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.858-868
    • /
    • 2009
  • A numerical investigation has been carried out about the performance of a 500MW class tangentially coal-fired boiler, focusing on the optimization of separated overfire air (SOFA) position to reduce NOx emission. For this purpose, a comprehensive combination of NOx chemistry models has been employed in the numerical simulation of a particle-laden flow along with solid fuel combustion and heat and mass transfer. A reasonable agreement has been shown in baseline cases for predicted operational parameters compared with experimental data measured in the boiler. A further SOFA calculation has been made to obtain optimum elevation and position of SOFA port. Additionally, clarifying on the effect of SOFA on NOx emission has been carried out in the coal-fired boiler. As a result, this paper is valuable to provide an information about the optimum position of SOFA and the mechanism by which the SOFA would affect NOx emission.

Characteristics of Coal Water Fuel by Various Drying Coals, Surfactants and Particle Size Distribution Using Low Rank Coal (건조된 저등급석탄과 첨가제 및 입자크기에 대한 석탄-물 혼합연료(CWF)의 특성)

  • Kim, Tae Joo;Kim, Sang Do;Lim, Jeong Hwan;Rhee, Young Woo;Lee, Si Hyun
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.464-468
    • /
    • 2013
  • In this study, in order to increase solid content of coal water fuel (CWF), various experimental parameters (i.e., coal type, additive, particle size distribution, drying method) were evaluated. To investigate the drying method, specimen is compared to using flash dry, fluidized bed dry and oil deposit stabilized coal. Difference of the solid content between low rank coal and high rank coal in this case indicate that high rank coal exhibits more higher than 20% of the solid cotent. And specimen for dispersibility was prepared by using dispersing agent of 4 types. As a result, using the dispersing agent was shown 5% higher in sold content than the case of not using the dispersing agent. Efficiency of CWF was improved by using fine coal of 80% in the particle size distribution of coal. Result of CWF using drying methods of 3 types, oil deposit stabilized (ODS) coal dried and stabilized was effective 12% higher in sold content than raw coal.

A Study on Methods for Developing by Nurturing Clean Thermal Power Generation Technology (청정화력발전 기술 육성 방안 연구)

  • Kim, Yeong-Mi;Lee, Won-Hak
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • The Korean government views coal-fired power plants as the key cause of the fine dust generation, and is developing an energy policy to replace and demolish old coal-fired power plants. According to the Eighth Power Supply Base Plan (2017-2031), the maximum power capacity in 2030 is expected to be 100.5GW, which is 17.9% higher than the current level (85.2GW). The plan aims to reduce the facility size and power generation ratio from nuclear and coal resources to even lower levels than today, and to rapidly expand power generation from new and renewable energy. Despite that, the proportion of coal power generation is still much higher than other resources, and it is expected that the reliance on goal will maintain for next several decades. Under such circumstances, the development, supply, and expansion of clean coal technology (CCT) that is eco-friendly and highly efficient, is crucial to minimize the emission of pollutants such as carbon dioxide and fine dust, as well as maximize the energy efficiency. The Korean government designated the Yong-Dong Thermoelectric Power Plant in Gangneung to develop clean coal power generation, and executed related projects for three years. The current study aims to suggest a plan to develop parts, technologies, testing, evaluation, certification, and commercialization efforts for coal-fired power generation, In addition, the study proposes a strategy to vitalize local economy and connect the development with creation of more jobs.

The Stabilization Study of Low-rank Coal by Vapor Adsorption (기상흡착 방법에 의한 저등급 석탄의 안정화 연구)

  • Chun, Dong Hyuk;Park, In Soo;Cho, Wan Taek;Jo, Eun Mi;Kim, Sang Do;Choi, Ho Kyung;Yoo, Jiho;Lim, Jeong Hwan;Rhim, Young Joon;Lee, Sihyun
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • Vapor adsorption of hydrocarbon has been studied for stabilization after drying low-rank coal. The surface characteristics and the propensity of spontaneous combustion were observed for stabilized coal which was maintained with hydrocarbons as stabilizer at several conditions of residence time and temperature. Surface area of micropores in coal mainly decreased after vapor adsorption. As residence time and temperature of adsorption process increased, the propensity of spontaneous combustion decreased. The type of hydrocarbons did not effect on the propensity of spontaneous combustion. As the analysis results of this work, the amount of hydrocarbon adsorbates required to stabilize dried coal was 0.5 wt% or less of coal, and the stabilizing effect was induced by adsorption of low-molecular-weight hydrocarbons.

Characteristics of Binderless Briquettes for Indonesian Low-Rank Coals (인도네시아 저등급석탄의 무결합제 성형 특성)

  • Chun, Dong Hyuk;Rhim, Young Joon;Kim, Sang Do;Yoo, Jiho;Choi, Ho Kyung;Lim, Jeong Hwan;Lee, Sihyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.231-235
    • /
    • 2015
  • The characteristics of binderless briquettes for dried low-rank coal was studied in this work. Two kinds of Indonesian coals were used to briquette after drying them in electric oven. The characteristics of briquettes have been examined by moisture contents, particle size, hydraulic force, and storing period. The optimum moisture contents of briquettes were observed at between 10 wt% and 15 wt%. The strength of coal briquette was stronger as particle size became smaller. The strength of coal briquette was proportional to the hydraulic force under 300 kN, whereas there was little difference among the briquettes made at more than 300 kN of hydraulic force. The strength of briquettes sharply decreased for a week after produced, and then showed the tendency of converging. The results from this work can be a useful guideline of manufacturing and managing upgraded coal briquettes.

Comparative Characterization of AFC Precipitated Using Vacuum Drying, Dilution Precipitation and Spray Drying (감압건조, 희석침전, 분무건조 방식으로 제조된 무회분석탄의 특성)

  • Kwon, Ho Jung;Choi, Ho Kyung;Jo, Wan Taek;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.234-238
    • /
    • 2016
  • Solid ash-free coal (AFC) samples recovered from solvent-extracted solution by vacuum drying, dilution precipitation and spray drying methods were compared in terms of physical properties and chemical structure. AFC was prepared by using Kideco coal (Indonesian sub-bituminous coal) and polar N-methyl-2-pyrrolidone (NMP) solvent as raw materials. The physical properties of the AFCs were characterized with proximate, ultimate, and calorific value analysis. In analyzing the chemical structure, FTIR and NMR were used. the proximate analysis showed much reduced ash in the AFCs compared to parent raw coal. The FTIR result showed that the extraction solvent was not fully removed from the AFC prepared by vacuum drying. However, the solvent was not detected in the AFC recovered by using dilution precipitation. Dilution precipitation has advantages over the other two methods, since it can be done at relatively low temperature and separate ash-free coal from extraction solvent more effectively.

Characteristics of Coal Devolatilization and Spontaneous Combustion at Low Temperatures (저온영역에서 석탄의 탈휘발 및 자연발화 특성 연구)

  • Sung Min Yoon;Seok Hyeong Lee;Tae Hwi An;Myung Won Seo;Sang Won Lee;Dae Sung Kim;Tae-Young Mun;Sung Jin Park;Sang Jun Yoon;Ji Hong Moon;Jae Goo Lee;Jong Hoon Joo;Ho Won Ra
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.288-296
    • /
    • 2023
  • Coal is abundantly available compared to other energy sources and is used as a versatile energy resource worldwide. To address the environmental issues stemming from conventional coal utilization, efforts are underway to develop clean coal utilization technologies, with IGCC technology being a notable example. In IGCC plants, coal is subjected to a CMD process where both drying and pulverization are achieved by supplying hot air. However, if the temperature of the supplied hot air is excessively high, it can lead to devolatilization and spontaneous combustion, thereby compromising the stable operation of the CMD process. This study aimed to measure the devolatilization and spontaneous combustion temperatures of different types of bituminous coal, and to explore their correlations with the characteristics of the coals. Six coal types exhibited devolatilization between 350 and 400 ℃, while three coal types showed devolatilization at temperatures exceeding 400 ℃. Spontaneous combustion ℃curred in one coal type below 100 ℃, six coal types between 100 and 150 ℃, and two coal types above 150 ℃. The measured initiation temperatures were compared with the coal characteristics including the oxygen, moisture, Fe2O3, and CaO content, the H/C ratio, and the O/C ratio to establish correlations. Regression analysis was used to calculate the regression coefficients and determination coefficients for each ignition temperature. It was found that 52.44% of the FC/VM data significantly influenced the volatile matter ignition temperature, and 59.10% of the Fe2O3 data significantly affected the spontaneous combustionignition temperature.

The Effect of Partitioning Porous Plate on Bubble Behavior and Gas Hold-up in a Bench Scale (0.36 m × 22 m) Trayed Bubble Column (벤치스케일(0.36 m × 22 m) 다단형 기포탑에서 다공판이 기포의 거동 및 기체 체류량에 미치는 영향)

  • Yang, Jung Hoon;Hur, Young Gul;Lee, Ho-Tae;Yang, Jung-Il;Kim, Hak-Joo;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.505-510
    • /
    • 2012
  • The gas hold-up has a strong relationship with the size distribution and rising velocities of bubbles in a bubble column. Therefore, many previous researchers have studied on the hydrodynamics focusing on the bubble size variation in bubble column. In this study, the bubble behavior was influenced by partitioning porous plates installed at a certain height in a trayed bubble column. The gas hold-up was increased in non-sparging region (H/D > 5) as well as sparging region. We identified the effect of the partitioning porous plate using three trayed bubble columns with different reactor geometries. Furthermore, the bubble break-up frequency and size distribution were observed before and after individual bubbles penetrated through the plate. The arrangement of the plates was also investigated using a 0.15-m-in-diameter bubble column. Based on the result, we applied this design concept to a 0.36-m-in-diameter, 22 m tall trayed bubble column and identified the effect of the partitioning porous plate on the gas hold-up increase.

Numerical study on heterogeneous behavior of fine particle growth

  • FAN, Fengxian;YANG, Linjun;Yuan, Zhulin;Yan, Jinpei;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 2009
  • $PM_{2.5}$ is one of critical air pollutants due to its high absorbability of heavy metallic fumes, PAH and bacillary micro organisms. Such a fine particulate matter is often formed through various nucleation processes including condensation. This study attempts to find the nucleation behaviors of $PM_{2.5}$ arisen from coal power stations using a classical heterogeneous Fletcher's theory. The numerical simulation by C-language could approximate the nucleation process of $PM_{2.5}$ from water vapor, of which approach revealed the required energy for embryo formation and embryo size and nucleation rate. As a result of the calculation, it was found that wetting agents could affect the particle nucleation in vapor condensation. In particular, critical contact angle relates closely with the vapor saturation. Particle condensation could be reduced by lowering the angles. The wetting agents aid to decrease the contact angle and surface tensions, thereby may contribute to save the formation energy.

  • PDF

Ultrasonic Effect on the Extraction of Ash-free coal from Low Rank Coal (저등급 석탄으로부터 초청정석탄의 추출과 초음파의 영향)

  • Lee, Sihyun;Kim, Sangdo;Jeong, Soonkwan;Rhim, Youngjun;Kim, Daehun;Woo, Kwangjae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.555-560
    • /
    • 2008
  • Extraction was performed to prepare ash-free coal from low rank coal under the temperature of $200-430^{\circ}C$ and initial pressure of 0.1MPa. Three kinds of coal samples with different rank were used and N-methyl-2-pyrrolidinone(NMP, polar), 1-methyl naphthalene(I-MN, non-polar), Light Cycle Oil(LCO, non-polar) were used as solvents. Results showed that higher extraction yield could be obtained with NMP than with 1-MN and LCO, but the ash concentration shows minimun in the case of 1-MN. Three operation modes were compared, that is, idle, agitation and ultrasonic extraction mode. From the results, it was found that the extraction yield and ash concentration were 70.09% and 1.03% under the agitation mode, 80.7% and 0.76% under the ultrasonic operation mode respectively in the case of NMP used at the temperature of $350^{\circ}C$. Similar results were obtained with 1-MN. Effect of ultrasonic on the extraction was estimated as 15-20% increase in the yields and 26% reduction in the ash concentration.