• Title/Summary/Keyword: ClayMineral

Search Result 546, Processing Time 0.023 seconds

Characteristics of adsorption-desorption of herbicide paraquat in soils (제초제 paraquat의 토양중 흡.탈착 특성)

  • Lee, Seog-June;Kim, Byung-Ha;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • This study was conducted to investigate the adsorption-desorption characteristics of herbicide paraquat on clay minerals, humic materials, and soils under the laboratory conditions. Adsorption time of paraquat on clay minerals was faster than organic materials and soils. Adsorption amount on montmorillonite, 2:1 expanding-lattice clay mineral, was largest among the adsorbents tested. The adsorption capacity of paraquat was approximately 21 % of cation exchange capacity in soils, 45.1 % in kaolinite, and 80.6% in montmorillonite. Humic materials, humic acid and fulvic acid isolated from soil II, adsorbed larger amount of paraquat than kaolinite and soils. Distribution of tightly bound type of paraquat was larger in clay mineral and soils but loosely bound type was larger in humic acid and fulvic acid. In oxidized soil, the adsorption amount of paraquat was decreased to 85.1-95.5% of original soils. Distribution of unbound and loosely bound type of paraquat was decreased in oxidized soil but tightly bound type was increased. The competition cations decreased paraquat adsorption on humic materials and soils but not affected on montmorillonite. No difference was observed as the kinds of cations. In cation-saturated adsorbents, the adsorption amount was decreased largely in humic materials and soils but decreased a little in montmorillonite. The tightly bound type of paraquat in all adsorbents was not desorbed by pH variation, sonication, and cation application but loosely bound type was desorbed. However, the desorption amount was different as a kinds of adsorbents and desorption methods.

  • PDF

Lithium Extraction from Smectitic Clay Occurring in Lithium-bearing Boron Deposits in Turkey (터키 리튬 함유 붕소광상에서 산출하는 스멕타이틱-점토로부터의 리튬 추출)

  • Lee, Won-Jong;Yoon, Soh-joung;Chon, Chul-Min;Heo, Chul-Ho;Lee, Gill-Jae;Lee, Bum-Han;Cicek, Murat
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.167-177
    • /
    • 2016
  • Smectitic clays, occurring in Kırka and Bigadiç boron evaporite deposits formed in Miocene playa lake environment in Turkey, contain $LiO_2$ 0.02-0.21% and 0.16-0.30%, respectively, and boron tailings are also reported to contain $LiO_2$ 0.04-0.26%. Lithium in smectitic clays was identified to be retained in hectorite. The XRD results revealed that hectorite was contained in 25.7% and 79.7% of Kırka and Bigadiç deposit samples respectively. In this study, we selected a clay sample from each deposit with lithium content of ~0.18% and estimated extractable lithium by acid treatment and roasting method commercially applicable to lithium resources, such as lepidolite and hectorite. When 1 g of crushed clay (particle size less than $74{\mu}m$) was reacted with 200 mL of 0.25 M HCl solution, the amount of lithium dissolved increased with the increase of reaction time up to 10 hours for both samples. Reaction time longer than 10 hours did not significantly increased the amount of lithium dissolved. After 10 hours of reaction, 89% of lithium in the clay sample from the Kırka deposit was dissolved, while 71% of lithium was dissolved from the Bigadiç deposit tailing sample. 87% of lithium in the clay sample from the Kırka deposit was extracted and 82% of lithium was extracted from the Bigadiç deposit tailing sample by the roasting extraction method, where clays were leached after a thermal treatment at $1,100^{\circ}C$ for 2 hours with $CaCO_3$ and $CaSO_4$.

Single-Particle Mineralogy and Mixing State of Asian Dust, Spring, 2009 (2009년 봄철 황사 단일 입자의 광물학 몇 혼합상태)

  • Jeong, Gi-Young;Choi, Ho-Jeong;Kwon, Seok-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • The mineralogy and mixing state were investigated by the high resolution scanning electron microscopy combined with energy-dispersive X-ray analysis on particles of the total suspended solid (TSP) samples collected during the Asian dust event, spring, 2009. Relatively large particles were dominated by quartz, plagioclase, K-feldspar, amphibole, biotite, muscovite, chlorite, and calcite. Clay minerals usually occur as thin coatings on the coarse minerals or as aggregates. Calcite nanofibers are often admixed with clay platelets in the clay coatings and aggregates. Dust particles were classified on the basis of their main minerals. The single-particle mineralogy and mixing state of the TSP sample are consistent with those of $PM_{10}$ samples in previous studies.

Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud

  • Koo, HyoJin;Lee, YunJi;Kim, SoonOh;Cho, HyenGoo
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.989-1000
    • /
    • 2018
  • The provenance of the Central Yellow Sea Mud (CYSM) in the Yellow Sea has been attracted a great deal of attention over the last three decades, but a consensus is not yet reached. In this study, 101 surface sediment samples collected from the CYSM were investigated to determine provenance and transport mechanisms in the area using the clay minerals and major element components. The Huanghe sediments are characterized by higher smectite, but the Changjiang sediments are more abundant illite contents. Western Korean rivers contain more kaolinite and chlorite than do Chinese rivers. The Chinese rivers have higher $Fe_2O_3$, MgO, and CaO than the Korean rivers at the same $Al_2O_3$ concentration. Therefore, the clay minerals and major element concentrations can be useful indicator for the source. Based on our results, we suggest that the surface sediments in CYSM were composed mainly of Changjiang sediments, mixed a partly with sediments from the Huanghe and the western Korean rivers. Although the northwestern part of CYSM is proximate to the Huanghe, the contents of smectite and CaO were extremely low. It could be evidence that the Huanghe materials do not enter directly into the CYSM due to the Shandong Peninsula Front. Considering the oceanic circulation in the Yellow Sea, the Changjiang sediments could be transported eastward with the Changjiang Diluted Water and then mixed in CYSM via the Yellow Sea Warm Current (YSWC). Huanghe sediments could be provided by coastal currents (Shandong Coastal Current and Yellow Sea Coastal Current) and the YSWC. In addition, sediments from western Korean rivers might be supplied into the CYSM deposit via the Korean Coastal Current, Transversal Current, and YSWC.

The Correlations between Mineralogy and Engineering Characteristics of Soft Clay in Sihwa Area (시화지구 연약점토의 광물학적 특성과 공학적 특성의 상관관계)

  • Kim Nak-Kyung;Park Jong-Sik;Joo Yong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.155-166
    • /
    • 2004
  • The characteristics of soft clays are very important for the land development plan. This study is to investigate correlations between the engineering properties and the characteristics of clay minerals of the undisturbed clay samples obtained from Sihwa area. This study included X-Ray diffraction analysis, X-Ray fluorescence spectrometer analysis, scanning electron microscopy analysis and energy dispersive X-Ray spectrometer analysis. The correlations between the clay mineral properties and the laboratory and field testing results were investigated. The characteristics of soft clay in Sihwa area were compared with those in Yangsan and Kunsan area.

A novel method for predicting the swelling potential of clay-bearing rocks

  • Moosavi, Mahdi;Ghadernejad, Saleh
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.615-626
    • /
    • 2021
  • The main objective of this study is to present a fast and reliable approach to predict the swelling potential of clay-bearing rocks. Investigations showed that there is a good correlation between the swelling potential of a rock and its desire to absorb water due to its clay content which could be measured using the "Contact Angle" test as one of the most common ways to determine the wettability. In this test, the angle between a water drop and the flat rock surface on which it rests is measured. The present method is very fast and returns repeatable results and requires minimal sample preparation. Only having a saw-cut surface of a sample with any shape is all one needs to perform this test. The logic behind this approach is that the swelling potential of a rock is a function of its mineral content and molecular structure, which are not only distributed in the bulk of the sample but also reflected on its surface. Therefore, to evaluate swelling behavior, it is not necessary to wait for a sample to get wet all the way to its "internal structure" (which, due to the low permeability of clay-bearing rocks, is very slow and time-consuming). Instead, one can have a good sense of swelling potential by studying its surface. Parametric studies on the effect of moisture content, porosity, and surface roughness on the contact angle measurements showed that using a saw-cut oven-dried sample is a convenient way to evaluate the swelling potential by this method.

A unique Vietnam's red clay-based brick reinforced with metallic wastes for γ-ray shielding purposes: Fabrication, characterization, and γ-ray attenuation properties

  • Ta Van Thuong;O.L. Tashlykov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1544-1551
    • /
    • 2024
  • A unique brick series based on Vietnamese clay was manufactured at 114.22 MPa pressure rate for γ-ray attenuation purposes, consisting of (x) metallic waste & (90%-x) red clay mineral & 10% (hardener mixed with epoxy resin), where (x) is equal to the values 0%, 20%, 40%, 50%, and 70%. The impacts of industrial metal waste ratio in the structure and radiation protective characteristics were evaluated experimentally. The increase in metallic waste doping concentrations from 0% to 70% was associated with an increase in the manufactured brick's density (ρ) from 2.103 to 2.256 g/cm3 while the fabricated samples' porosity (Φ) decreased from 11.7 to 1.0%, respectively. Together with a rise in fabricated brick's density and a decrease in their porosities, the manufactured bricks' γ-ray attenuation capacities improved. The measured linear attenuation coefficient (μ, cm-1) was improved by 30.8%, 22.1%, 21.6%, and 19.7%, at Eγ equal to the values respectively 0.662, 1.173, 1.252, and 1.332 MeV, when the metallic waste concentration increased from 0% to 70%, respectively. The study demonstrates that manufactured bricks exhibit superior radiation shielding properties, with radiation protection efficiencies of 88.4%, 90.0%, 91.7%, 92.1%, and 92.4% for bricks with industrial metal waste contents of 0%, 20%, 40%, 50%, and 70%, respectively, at γ-ray energy (Eγ) of 1.332 MeV.

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by Heat Treatment Condition - Focused on discarded Bentonite by cooling using of Water - (소성조건에 따른 폐 벤토나이트의 포졸란 반응성에 관한 실험적 연구 - 주수냉각을 중심으로 -)

  • 장진봉;정민수;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.85-90
    • /
    • 2002
  • This study aims to propose a fundamental report for pozzolan reaction of discarded Bentonite by heat-treatment as concrete mineral admixture. As discarded bentonite is clay mineral to contain a great quantity a lot of $SiO_2$ and $Al_{2}O_{3}$, it is anticipated to reveal pozzolan reaction ability by heat-treatment. To find out pozzolan reaction ability of discarded Bentonite slurry by heat-treatment, the experiment is excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite slurry can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite slurry is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

  • PDF

Synthesis of Alinite-Calciumchloroaluminate System Cement Using Solid State Waste

  • Cho, Jin-Sang;Han, Gi-Chun;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan;Lee, Hyoung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.581-585
    • /
    • 2001
  • Alinite-Calciumchloroaluminate system clinker was synthesized from solid state waste. The raw materials were municipal incineration ash, sewage sludge, limestone and clay. ecocement was prepared by the mixing of synthesized clinker and optimum amount of gypsum and its hydrolysis characteristic was investigated. X-ray diffraction, conduction calorimeter and reflecting microscope were used to analyze structural and physical properties. The main phase of clinker were alinite, calcium chloroaluminate. $C_2$S, $C_3$S. From the results of hardening time, hydration reactivity of synthesized all samples was faster than that of ordinary portland cement.

  • PDF

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.