• 제목/요약/키워드: Claudin

Search Result 85, Processing Time 0.033 seconds

Improvement effect of cooked soybeans on HFD-deteriorated large intestinal health in rat model (쥐 모델에서 고지방사료로 악화된 대장 건강에 대한 콩의 개선 효과)

  • Choi, Jae Ho;Shin, Taekyun;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Do-Youn;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.383-389
    • /
    • 2021
  • Obesity is associated with impaired intestinal epithelial barrier function, which contribute to host systemic inflammation and metabolic dysfunction. Korean traditional foods, fiber-rich bean products, have been various biological activities in anti-inflammatory responses, but has not reported the large intestinal health. In this study, we investigated the intestinal health promoting effect of cooked soybeans (CSB) on high fat diet (HFD)-induced obesity model. SD rat were fed either a HFD or HFD supplemented with 10.6% CSB (HFD+CSB) for animal experimental period. CSB treatment significantly decreased the HFD-induced weights of body and fat. Also, CSB treatment improved HFD-reduced tight junction components (ZO-1, Claudin-1, and Occludin-1) mRNA expression in large intestine tissue. Additionally, histopathological evaluation showed that CSB treatment attenuated the HFD-increased inflammatory cells infiltration and epithelial damages in large intestine tissue. At the genus level, effects of CSB supplement not yet clear, while dietary effects showed differential abundance of several genera including Lactobacillus, Duncaniella, and Alloprevotella. NMDS analysis showed significant microbial shifts by HFD, while CSB did not shift gut microbiota. CSB increased the abundance of the genera Anaerotignum, Enterococcus, Clostridium sensu stricto, and Escherichia/Shigella by linear discriminant analysis effect size analysis, while reduced the abundance of Longicatena and Ligilactobacillus. These findings indicate that CSB supplement improves HFD-deteriorated large intestinal health by the amelioration of tight junction component, while CSB did not shift gut microbiotas.

Clinical Significance of CLDN18.2 Expression in Metastatic Diffuse-Type Gastric Cancer

  • Kim, Seo Ree;Shin, Kabsoo;Park, Jae Myung;Lee, Han Hong;Song, Kyo Yong;Lee, Sung Hak;Kim, Bohyun;Kim, Sang-Yeob;Seo, Junyoung;Kim, Jeong-Oh;Roh, Sang-Young;Kim, In-Ho
    • Journal of Gastric Cancer
    • /
    • v.20 no.4
    • /
    • pp.408-420
    • /
    • 2020
  • Purpose: Isoform 2 of tight junction protein claudin-18 (CLDN18.2) is a potential target for gastric cancer treatment. A treatment targeting CLDN18.2 has shown promising results in gastric cancer. We investigated the clinical significance of CLDN18.2 and other cell-adherens junction molecules (Rho GTPase-activating protein [RhoGAP] and E-cadherin) in metastatic diffuse-type gastric cancer (mDGC). Materials and Methods: We evaluated CLDN18.2, RhoGAP, and E-cadherin expression using two-plex immunofluorescence and quantitative data analysis of H-scores of 77 consecutive mDGC patients who received first-line platinum-based chemotherapy between March 2015 and February 2017. Results: CLDN18.2 and E-cadherin expression was significantly lower in patients with peritoneal metastasis (PM) than those without PM at the time of diagnosis (P=0.010 and 0.013, respectively), whereas it was significantly higher in patients who never developed PM from diagnosis to death than in those who did (P=0.001 and 0.003, respectively). Meanwhile, CLDN18.2 and E-cadherin expression levels were significantly higher in patients with bone metastasis than in those without bone metastasis (P=0.010 and 0.001, respectively). Moreover, we identified a positive correlation between the expression of CLDN18.2 and E-cadherin (P<0.001), RhoGAP and CLDN18.2 (P=0.004), and RhoGAP and E-cadherin (P=0.001). Conversely, CLDN18.2, RhoGAP, and E-cadherin expression was not associated with chemotherapy response and survival. Conclusions: CLDN18.2 expression was reduced in patients with PM but significantly intact in those with bone metastasis. Furthermore, CLDN18.2 expression was positively correlated with other adherens junction molecules, which is clinically associated with mDGC and PM pathogenesis.

Effects of a mixture of Citri Pericarpium and Scutellariae Radix on acute reflux esophagitis in rats (진피-황금 혼합물이 급성 역류성 식도염 흰쥐에 미치는 효과)

  • Lee, Jin A;Shin, Mi-Rae;Roh, Seong-Soo;Park, Hae-Jin
    • Journal of Nutrition and Health
    • /
    • v.54 no.3
    • /
    • pp.321-333
    • /
    • 2021
  • Purpose: Reflux esophagitis is a disease caused by the reflux of stomach contents and stomach acid etc. into the esophagus due to defect in the lower esophageal sphincter and is currently increasing worldwide. This study was conducted to evaluate the effect of a mixture of Citrus Reticulata and Scutellariae Radix (CS) extract on acute reflux esophagitis in rats. Methods: Rats were divided into five groups for examination: normal group (Normal, n = 8), water-treated acute reflux esophagitis rats (Control, n = 8), tocopherol 30 mg/kg body weight-treated acute reflux esophagitis rats (Toco, n = 8), CS 100 mg/kg body weight-treated acute reflux esophagitis rats (CS100, n = 8), CS 200 mg/kg body weight-treated acute reflux esophagitis rats (CS200, n = 8). The experimental groups were administrated of each treatment compounds and after 90 min, acute reflux esophagitis was induced through surgery. Rats were sacrificed 5 h after surgery. We measured the level of reactive oxygen species (ROS) in serum and analyzed the expression of nicotinamide adenine dinucleotide phosphate, inflammatory, and tight junction-related proteins by western blot in the esophageal tissues. Results: CS administration significantly protected the esophageal mucosal damage due to reflux esophagitis, and the level of ROS in the serum was significantly reduced with CS administration as compared to Control. In addition, CS administration significantly suppressed mitogen-activated protein kinase (MAPK or MAP kinase) and nuclear factor-kappa B (NF-κB) pathways and increased protein expressions of tight junction protein. Conclusion: These results suggest that the CS not only regulates the expression of inflammatory proteins by inhibiting oxidative stress, but also reduces damage to the esophageal mucosa by inhibiting the expression of tight junction proteins.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Effects of substitution of soybean meal with rapeseed meal and glutamine supplementation on growth performance, intestinal morphology, and intestinal mucosa barrier of Qiandongnan Xiaoxiang Chicken

  • Zhang, Bolin;Liu, Ning;Hao, Meilin;Xie, Yuxiao;Song, Peiyong
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1711-1724
    • /
    • 2022
  • Objective: The present study was to evaluate the effects of different rapeseed meal substitution (RSM) and glutamine (Gln) supplementation on growth performance, intestine morphology, and intestinal mucosa barrier of broilers. Methods: Four hundred and twenty Qiandongnan Xiaoxiang Chicken at 1 day of age with similar weight were chosen and were randomly assigned into 7 groups, consisting of 10 replicates per group and 6 broilers per replicate. Three groups were provided with diets separately containing 0%, 10%, and 20% RSM, and the other four groups were fed with diets separately supplemented with 0.5% and 1% Gln based on the inclusion of 10% and 20% RSM. At 21 and 42 days of age, 10 broilers per group were chosen to collect plasma and intestinal samples for further analysis. Results: The results showed that 10% RSM decreased average daily feed intake (ADFI) and average daily weight gain (ADG) of broilers at 21 days of age (p<0.05). Furthermore, both ADFI and ADG of broilers at 21 and 42 days of age were decreased by 20% RSM, while feed conversion ratio (FCR) was increased (p<0.05). Besides, 10% RSM resulted in lower intestinal villus height and the ratio of villus height to crypt depth, deeper crypt depth (p<0.05), combined with the lower mRNA expressions of occludin, claudin-1, and zonula occludens-1 (ZO-1) in broilers at 21 days of age (p<0.05). Similar results were also observed in broilers at 21 and 42 days of age fed with 20% RSM. However, 1% Gln improved the growth performance of broilers fed with 10% and 20% RSM (p<0.05), ameliorated intestine morphology and elevated mRNA expressions of occludin, claudin-1 and ZO-1 (p<0.05). Conclusion: In conclusion, the increasing inclusion of RSM resulted in more serious effects on broilers, however, 1.0% Gln could reverse the negative effects induced by the inclusion of RSM.

Research for Intestinal Mucosal Immunity Induced by Salmonella enteritidis Infection (Salmonella enteritidis 감염에 의해 장내 점막에서 유도되는 면역반응에 관한 연구)

  • Lee, Kang-Hee;Lee, Se-Hui;Yang, Jin-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Mucosal immunity is a well-designed defense system that builds precise and dynamic relationships against pathogens, and the gastrointestinal tract is the most important organ with this system, acting as a guardian at the forefront of its activity. Salmonella spp. cause food poisoning, entering the body orally and mainly invading the Peyer's patches of the small intestine. Although Salmonella strains share similar mechanisms for inducing innate immunity, different serotypes may have different effects on the intestinal mucosa due to host specificities and pathogenicity. In this study, we evaluated the effects of Salmonella enteritidis infections in mouse intestine and observed significantly reduced dose-dependent survival rates in a challenge test. Flow cytometry data showed no significant differences in intestinal immune cell populations, although histology indicated increased mucin production and decreased goblet cell counts in the Salmonella-treated groups. Furthermore, Claudin expression was significantly decreased in the samples with Salmonella. To investigate the relationship between S. enteritidis infection and inflammatory response, dextran sodium sulfate (DSS) was administered after infection and the results indicate lower survival rate after DSS treatment. In conclusion, we were able to identify the optimal concentration of S. enteritidis to modulate the intestinal mucosal immunity of mice and inflammatory response.

Identification of Antioxidant Activities and Stimulation of Human Keratinocytes Differentiation Effects of Syzygium claviflorum Extract (Syzygium claviflorum 추출물의 항산화 활성 및 각질형성세포 분화유도 효과)

  • Gayeon Seo;Jiyeon Moon;Yukyung Park;Juyeong Kim;Hoyong Hyun;Beomsu Jeong;Thet Thet Mar Win;Thant Zaw Win;Sangho Choi;Sangmi Eum;Dongwon Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • We validated the physiological activity of Syzygium claviflorum (Roxb.) Wall. ex A.M. Cowan & Cowan (S. claviflorum) extracts (leaves, stems, fruits, and flowers) as a cosmetic ingredient. Firstly, S. claviflorum extracts removed over 80% of free radicals at various concentrations in antioxidant experiments using the DPPH and ABTS assay. In cytotoxicity experiments using human epidermal keratinocytes, S. claviflorum extracts showed low cytotoxicity. In addition, S. claviflorum extracts significantly increased the expression of keratin (KRT)1, KRT2, KRT9, KRT10, which are differentiation markers of keratinocytes, as well as genes involved in the maintenance of skin barrier function, including involucrin (IVL), loricrin (LOR), filaggrin (FLG), and claudin1 (CLDN1). In particular, the expression of FLG protein, inhibited by interleukin (IL)-4/IL-13 in atopic dermatitis, was restored by S. claviflorum extracts in in vitro experiments. Therefore, S. claviflorum extracts with excellent antioxidant efficacy and skin barrier improvement function will be useful materials for the development of future atopic dermatitis treatments and cosmetics.

Effects of quercetin and coated sodium butyrate dietary supplementation in diquat-challenged pullets

  • Zhou, Ning;Tian, Yong;Liu, Wenchao;Tu, Bingjiang;Gu, Tiantian;Xu, Wenwu;Zou, Kang;Lu, Lizhi
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1434-1443
    • /
    • 2022
  • Objective: This study was designed to investigate the hypothesis that dietary quercetin (QUE) and coated sodium butyrate (SB) supplementation alleviate oxidative stress in the small intestine of diquat (DIQ)-challenged pullets. Methods: A total of 200 13-week-old pullets were divided into four groups: the control group (CON), the DIQ group, the QUE group, and the coated SB group, and injected intraperitoneally with either saline (CON) or diquat (DIQ, QUE, and SB) to induce oxidative stress on day 0. Results: On the first day, the malondialdehyde and superoxide dismutase (SOD) concentrations in the SB group were significantly different from those in the DIQ and QUE groups (p<0.05), and dietary supplementation with SB increased serum glutathione peroxidase (GSH-PX) levels compared with the DIQ group (p<0.05). Quercetin and SB increased the levels of CLAUDIN-1 and zonula occludens-1 (ZO-1) in the jejunum. On the tenth day of treatment, QUE attenuated the decrease in GSH-PX levels compared to those of the CON group (p<0.05), while SB increased SOD, GSH-PX, and total antioxidant capacity levels compared to those of the DIQ group. Nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) mRNA levels in the QUE and SB groups increased (p<0.05) and CLAUDIN-1 mRNA levels in the QUE and SB groups were upregulated compared to those in the DIQ group ileum tissue. Conclusion: Supplementation of QUE and SB demonstrated the ability to relieve oxidative stress in pullets post DIQ-injection with a time-dependent manner and QUE and SB may be potential antioxidant additives for relieving oxidative stress and protecting the intestinal barrier of pullets.

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

Blood-Testis Barrier and Sperm Delayed in the Cauda Epididymis of the Reproductively Regressed Syrian Hamsters

  • Jeon, Geon Hyung;Lee, Sung-Ho;Cheon, Yong-Pil;Choi, Donchan
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Syrian (golden) hamsters are seasonal breeders whose reproductive functions are active in summer and inactive in winter. In experimental facility mimicking winter climate, short photoperiod (SP) induces gonadal regression. The blood-testis barrier (BTB) of the sexually involuted animals have been reported to be permeable, allowing developing germ cells to be engulfed or sloughed off the epithelium of the seminiferous tubules. The expressions of genes related to the tight junction composing of BTB were investigated in the reproductive active and inactive testes. Claudin-11, occludin, and junctional adhesion molecule (JAM) were definitely expressed in the active testes but not discernably detected in the inactive testes. And spermatozoa (sperm) were observed in the whole lengths of epididymides in the active testes. They were witnessed in only cauda region of the epididymides but not in caput and corpus regions in animals with the inactive testes. The results imply that the disorganization of BTB is associated with the testicular regression. The developing germ cells are swallowed into the Sertoli cells or travel into the lumen, as supported by the presence of the sperm delayed in the last region of the epididymis. These outcomes suggest that both apoptosis and desquamation are the processes that eliminate the germ cells during the regressing stage in the Syrian hamsters.