• Title/Summary/Keyword: Classify Algorithm

Search Result 904, Processing Time 0.028 seconds

Accuracy Assessment and Classification of Surface Contaminants of Stone Cultural Heritages Using Hyperspectral Image - Focusing on Stone Buddhas in Four Directions at Gulbulsa Temple Site, Gyeongju - (초분광 영상을 활용한 석조문화재 표면오염물 분류 및 정확도 평가 - 경주 굴불사지 석조사면불상을 중심으로 -)

  • Ahn, Yu Bin;Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.73-81
    • /
    • 2020
  • Considering the difficulties associated with the creation of deterioration maps for stone cultural heritages, quantitative determination of chemical and biological contaminants in them is still challenging. Hyperspectral image analysis has been proposed to overcome this drawback. In this study, hyperspectral imaging was performed on Stone Buddhas Temple in Four Directions at Gulbulsa Temple Site(Treasure 121), and several surface contaminants were observed. Based on the color and shape, these chemical and biological contaminants were classified into ten categories. Additionally, a method for establishing each class as a reference image was suggested. Simultaneously, with the help of Spectral Angle Mapper algorithm, two classification methods were used to classify the surface contaminants. Method A focused on the region of interest, while method B involved the application of the spectral library prepared from the image. Comparison of the classified images with the reference image revealed that the accuracies and kappa coefficients of methods A and B were 52.07% and 63.61%, and 0.43 and 0.55, respectively. Additionally, misclassified pixels were distributed in the same contamination series.

A Study on Clutter Rejection using PCA and Stochastic features of Edge Image (주성분 분석법 및 외곽선 영상의 통계적 특성을 이용한 클러터 제거기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.12-18
    • /
    • 2010
  • Automatic Target Detection (ATD) systems that use forward-looking infrared (FLIR) consists of three stages. preprocessing, detection, and clutter rejection. All potential targets are extracted in preprocessing and detection stages. But, this results in a high false alarm rates. To reduce false alarm rates of ATD system, true targets are extracted in the clutter rejection stage. This paper focuses on clutter rejection stage. This paper presents a new clutter rejection technique using PCA features and stochastic features of clutters and targets. PCA features are obtained from Euclidian distances using which potential targets are projected to reduced eigenspace selected from target eigenvectors. CV is used for calculating stochastic features of edges in targets and clutters images. To distinguish between target and clutter, LDA (Linear Discriminant Analysis) is applied. The experimental results show that the proposed algorithm accurately classify clutters with a low false rate compared to PCA method or CV method

Changes Detection of Ice Dimension in Cheonji, Baekdu Mountain Using Sentinel-1 Image Classification (Sentinel-1 위성의 영상 분류 기법을 이용한 백두산 천지의 얼음 면적 변화 탐지)

  • Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.

Classification of Parent Company's Downward Business Clients Using Random Forest: Focused on Value Chain at the Industry of Automobile Parts (랜덤포레스트를 이용한 모기업의 하향 거래처 기업의 분류: 자동차 부품산업의 가치사슬을 중심으로)

  • Kim, Teajin;Hong, Jeongshik;Jeon, Yunsu;Park, Jongryul;An, Teayuk
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • The value chain has been utilized as a strategic tool to improve competitive advantage, mainly at the enterprise level and at the industrial level. However, in order to conduct value chain analysis at the enterprise level, the client companies of the parent company should be classified according to whether they belong to it's value chain. The establishment of a value chain for a single company can be performed smoothly by experts, but it takes a lot of cost and time to build one which consists of multiple companies. Thus, this study proposes a model that automatically classifies the companies that form a value chain based on actual transaction data. A total of 19 transaction attribute variables were extracted from the transaction data and processed into the form of input data for machine learning method. The proposed model was constructed using the Random Forest algorithm. The experiment was conducted on a automobile parts company. The experimental results demonstrate that the proposed model can classify the client companies of the parent company automatically with 92% of accuracy, 76% of F1-score and 94% of AUC. Also, the empirical study confirm that a few transaction attributes such as transaction concentration, transaction amount and total sales per customer are the main characteristics representing the companies that form a value chain.

Fast Detection of Power Lines Using LIDAR for Flight Obstacle Avoidance and Its Applicability Analysis (비행장애물 회피를 위한 라이다 기반 송전선 고속탐지 및 적용가능성 분석)

  • Lee, Mijin;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2014
  • Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.

The Factors that Affects the Employment Type of The Graduates by Data-mining Approach (데이터마이닝 기법을 활용한 대졸자 고용에 미치는 영향요인 분석)

  • Kim, Hyoung-Rae;Jeon, Do-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.167-174
    • /
    • 2012
  • Data mining technique can be adapted to analysing Employment information in order to discover valuable information out of large data. As the issue employment such as jobless of college graduate, recruitment for women, recruitment for elders etc. became social problem, there are many efforts of various public employment services and studies. The factors that affects the college graduate's employment type (regular, temporary, daily) can be used to guide employment and to prepare employment for college students. In analyzing large number of attributes and the huge amount of data elements, regular statistical methods faces their limitation; therefore, data-mining technique is more suitable for the dataset of about 170 attributes and 20,000 elements. We divide the factors that may affect the employment type into personal factor, school factor, company factor, and experience factor; decision tree algorithm is used to find out the interesting relationship between the attributes of the factors and employment type. Personal factors such as the income of parents and marital status were the most affective factors to the employment type. The learned decision tree was able to classify the employment type with 87% of accuracy. We also assume the level of the school affects the employment type of the graduates.

2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos (단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법)

  • Ko, Jae-Seung;Kim, Young-Woo;Jung, Young-Ju;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2008
  • This paper proposes a novel method to convert monoscopic soccer videos to stereoscopic videos. Through the soccer video analysis process, we detect shot boundaries and classify soccer frames into long shot or non-long shot. In the long shot case, the depth mapis generated relying on the size of the extracted ground region. For the non-long shot case, the shot is further partitioned into three types by considering the number of ground blocks and skin blocks which is obtained by a simple skin-color detection method. Then three different depth assignment methods are applied to each non-long shot types: 1) Depth estimation by object region extraction, 2) Foreground estimation by using the skin block and depth value computation by Gaussian function, and 3)the depth map generation for shots not containing the skin blocks. This depth assignment is followed by stereoscopic image generation. Subjective evaluation comparing generated depth maps and corresponding stereoscopic images indicate that the proposed algorithm can yield the sense of depth from a single view images.

Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network (신경망의 결정론적 이완에 의한 자기공명영상 분류)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Purpose : This paper introduces an improved classification approach which adopts a deterministic relaxation method and an agglomerative clustering technique for the classification of MRI using neural network. The proposed approach can solve the problems of convergency to local optima and computational burden caused by a large number of input patterns when a neural network is used for image classification. Materials and methods : Application of Hopfield neural network has been solving various optimization problems. However, major problem of mapping an image classification problem into a neural network is that network is opt to converge to local optima and its convergency toward the global solution with a standard stochastic relaxation spends much time. Therefore, to avoid local solutions and to achieve fast convergency toward a global optimization, we adopt MFA to a Hopfield network during the classification. MFA replaces the stochastic nature of simulated annealing method with a set of deterministic update rules that act on the average value of the variable. By minimizing averages, it is possible to converge to an equilibrium state considerably faster than standard simulated annealing method. Moreover, the proposed agglomerative clustering algorithm which determines the underlying clusters of the image provides initial input values of Hopfield neural network. Results : The proposed approach which uses agglomerative clustering and deterministic relaxation approach resolves the problem of local optimization and achieves fast convergency toward a global optimization when a neural network is used for MRI classification. Conclusion : In this paper, we introduce a new paradigm to classify MRI using clustering analysis and deterministic relaxation for neural network to improve the classification results.

  • PDF

Vegetation Cover Type Mapping Over The Korean Peninsula Using Multitemporal AVHRR Data (시계열(時系列) AVHRR 위성자료(衛星資料)를 이용한 한반도 식생분포(植生分布) 구분(區分))

  • Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.441-449
    • /
    • 1994
  • The two reflective channels(red and near infrared spectrum) of advanced very high resolution radiometer(AVHRR) data were used to classify primary vegetation cover types in the Korean Peninsula. From the NOAA-11 satellite data archive of 1991, 27 daytime scenes of relatively minimum cloud coverage were obtained. After the initial radiometric calibration, normalized difference vegetation index(NDVI) was calculated for each of the 27 data sets. Four or five daily NDVI data were then overlaid for each of the six months starting from February to November and the maximum value of NDVI was retained for every pixel location to make a monthly composite. The six bands of monthly NDVI composite were nearly cloud free and used for the computer classification of vegetation cover. Based on the temporal signatures of different vegetation cover types, which were generated by an unsupervised block clustering algorithm, every pixel was classified into one of the six cover type categories. The classification result was evaluated by both qualitative interpretation and quantitative comparison with existing forest statistics. Considering frequent data acquisition, low data cost and volume, and large area coverage, it is believed that AVHRR data are effective for vegetation cover type mapping at regional scale.

  • PDF

Three-Phase English Syntactic Analysis for Improving the Parsing Efficiency (영어 구문 분석의 효율 개선을 위한 3단계 구문 분석)

  • Kim, Sung-Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • The performance of an English-Korean machine translation system depends heavily on its English parser. The parser in this paper is a part of the rule-based English-Korean MT system, which includes many syntactic rules and performs the chart-based parsing. The parser generates too many structures due to many syntactic rules, so much time and memory are required. The rule-based parser has difficulty in analyzing and translating the long sentences including the commas because they cause high parsing complexity. In this paper, we propose the 3-phase parsing method with sentence segmentation to efficiently translate the long sentences appearing in usual. Each phase of the syntactic analysis applies its own independent syntactic rules in order to reduce parsing complexity. For the purpose, we classify the syntactic rules into 3 classes and design the 3-phase parsing algorithm. Especially, the syntactic rules in the 3rd class are for the sentence structures composed with commas. We present the automatic rule acquisition method for 3rd class rules from the syntactic analysis of the corpus, with which we aim to continuously improve the coverage of the parsing. The experimental results shows that the proposed 3-phase parsing method is superior to the prior parsing method using only intra-sentence segmentation in terms of the parsing speed/memory efficiency with keeping the translation quality.