• Title/Summary/Keyword: Classifier algorithm

Search Result 721, Processing Time 0.025 seconds

Multiple Faults Diagnosis in Induction Motors Using Two-Dimension Representation of Vibration Signals (진동 신호의 2차원 변환을 통한 유도 전동기 다중 결함 진단)

  • Jeong, In-Kyu;Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.338-345
    • /
    • 2013
  • Induction motors play an increasing importance in industrial manufacturing. Therefore, the state monitoring systems also have been considering as the key in dealing with their negative effect by absorbing faulty symptoms in motors. There are numerous proposed systems in literature, in which, several kinds of signals are utilized as the input. To solve the multiple faults problem of induction motors, like the proposed system, the vibration signals is good candidate. In this study, a new signal processing scheme was utilized, which transforms the time domain vibration signal into the spatial domain as an image. Then the spatial features of converted image then have been extracted by applying the dominant neighbourhood structure (DNS) algorithm. In addition, these feature vectors were evaluated to obtain the fruitful dimensions, which support to discriminate between states of motors. Because of reliability, the conventional one-against-all (OAA) multi-class support vector machines (MCSVM) have been utilized in the proposed system as classifier module. Even though examined in severity levels of signal-to-noise ratio (SNR), up to 15dB, the proposed system still reliable in term of two criteria: true positive (TF) and false positive (FP). Furthermore, it also offers better performance than five state-of-the-art systems.

  • PDF

Real-Time Object Recognition for Children Education Applications based on Augmented Reality (증강현실 기반 아동 학습 어플리케이션을 위한 실시간 영상 인식)

  • Park, Kang-Kyu;Yi, Kang
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.17-31
    • /
    • 2017
  • The aim of the paper is to present an object recognition method toward augmented reality system that utilizes existing education instruments that was designed without any consideration on image processing and recognition. The light reflection, sizes, shapes, and color range of the existing target education instruments are major hurdles to our object recognition. In addition, the real-time performance requirements on embedded devices and user experience constraints for children users are quite challenging issues to be solved for our image processing and object recognition approach. In order to meet these requirements we employed a method cascading light-weight weak classification methods that are complimentary each other to make a resultant complicated and highly accurate object classifier toward practically reasonable precision ratio. We implemented the proposed method and tested the performance by video with more than 11,700 frames of actual playing scenario. The experimental result showed 0.54% miss ratio and 1.35% false hit ratio.

Hardware Implementation for Stabilization of Detected Face Area (검출된 얼굴 영역 안정화를 위한 하드웨어 구현)

  • Cho, Ho-Sang;Jang, Kyoung-Hoon;Kang, Hyun-Jung;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • This paper presents a hardware-implemented face regions stabilization algorithm that stabilizes facial regions using the locations and sizes of human faces found by a face detection system. Face detection algorithms extract facial features or patterns determining the presence of a face from a video source and detect faces via a classifier trained on example faces. But face detection results has big variations in the detected locations and sizes of faces by slight shaking. To address this problem, the high frequency reduce filter that reduces variations in the detected face regions by taking into account the face range information between the current and previous video frames are implemented in addition to center distance comparison and zooming operations.

Recognition Performance Enhancement by License Plate Normalization (번호판 정규화에 의한 인식 성능 향상 기법)

  • Kim, Do-Hyeon;Kang, Min-Kyung;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1278-1290
    • /
    • 2008
  • This paper proposes a preprocessing method and a neural network based character recognizer to enhance the overall performance of the license plate recognition system. First, plate outlines are extracted by virtual line matching, and then the 4 vertexes are obtained by calculating intersecting points of extracted lines. By these vertexes, plate image is reconstructed as rectangle-shaped image by bilinear transform. Finally, the license plate is recognized by the neural network based classifier which had been trained using delta-bar-delta algorithm. Various license plate images were used in the experiments, and the proposed plate normalization enhanced the recognition performance up to 16 percent.

A Step towards the Improvement in the Performance of Text Classification

  • Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2162-2179
    • /
    • 2019
  • The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.

The earth mover's distance and Bayesian linear discriminant analysis for epileptic seizure detection in scalp EEG

  • Yuan, Shasha;Liu, Jinxing;Shang, Junliang;Kong, Xiangzhen;Yuan, Qi;Ma, Zhen
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.373-382
    • /
    • 2018
  • Since epileptic seizure is unpredictable and paroxysmal, an automatic system for seizure detecting could be of great significance and assistance to patients and medical staff. In this paper, a novel method is proposed for multichannel patient-specific seizure detection applying the earth mover's distance (EMD) in scalp EEG. Firstly, the wavelet decomposition is executed to the original EEGs with five scales, the scale 3, 4 and 5 are selected and transformed into histograms and afterwards the distances between histograms in pairs are computed applying the earth mover's distance as effective features. Then, the EMD features are sent to the classifier based on the Bayesian linear discriminant analysis (BLDA) for classification, and an efficient postprocessing procedure is applied to improve the detection system precision, finally. To evaluate the performance of the proposed method, the CHB-MIT scalp EEG database with 958 h EEG recordings from 23 epileptic patients is used and a relatively satisfactory detection rate is achieved with the average sensitivity of 95.65% and false detection rate of 0.68/h. The good performance of this algorithm indicates the potential application for seizure monitoring in clinical practice.

A Novel Text Sample Selection Model for Scene Text Detection via Bootstrap Learning

  • Kong, Jun;Sun, Jinhua;Jiang, Min;Hou, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.771-789
    • /
    • 2019
  • Text detection has been a popular research topic in the field of computer vision. It is difficult for prevalent text detection algorithms to avoid the dependence on datasets. To overcome this problem, we proposed a novel unsupervised text detection algorithm inspired by bootstrap learning. Firstly, the text candidate in a novel form of superpixel is proposed to improve the text recall rate by image segmentation. Secondly, we propose a unique text sample selection model (TSSM) to extract text samples from the current image and eliminate database dependency. Specifically, to improve the precision of samples, we combine maximally stable extremal regions (MSERs) and the saliency map to generate sample reference maps with a double threshold scheme. Finally, a multiple kernel boosting method is developed to generate a strong text classifier by combining multiple single kernel SVMs based on the samples selected from TSSM. Experimental results on standard datasets demonstrate that our text detection method is robust to complex backgrounds and multilingual text and shows stable performance on different standard datasets.

An Efficient Machine Learning-based Text Summarization in the Malayalam Language

  • P Haroon, Rosna;Gafur M, Abdul;Nisha U, Barakkath
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1778-1799
    • /
    • 2022
  • Automatic text summarization is a procedure that packs enormous content into a more limited book that incorporates significant data. Malayalam is one of the toughest languages utilized in certain areas of India, most normally in Kerala and in Lakshadweep. Natural language processing in the Malayalam language is relatively low due to the complexity of the language as well as the scarcity of available resources. In this paper, a way is proposed to deal with the text summarization process in Malayalam documents by training a model based on the Support Vector Machine classification algorithm. Different features of the text are taken into account for training the machine so that the system can output the most important data from the input text. The classifier can classify the most important, important, average, and least significant sentences into separate classes and based on this, the machine will be able to create a summary of the input document. The user can select a compression ratio so that the system will output that much fraction of the summary. The model performance is measured by using different genres of Malayalam documents as well as documents from the same domain. The model is evaluated by considering content evaluation measures precision, recall, F score, and relative utility. Obtained precision and recall value shows that the model is trustable and found to be more relevant compared to the other summarizers.

Machine Learning Methods for Trust-based Selection of Web Services

  • Hasnain, Muhammad;Ghani, Imran;Pasha, Muhammad F.;Jeong, Seung R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.38-59
    • /
    • 2022
  • Web services instances can be classified into two categories, namely trusted and untrusted from users. A web service with high throughput (TP) and low response time (RT) instance values is a trusted web service. Web services are not trustworthy due to the mismatch in the guaranteed instance values and the actual values achieved by users. To perform web services selection from users' attained TP and RT values, we need to verify the correct prediction of trusted and untrusted instances from invoked web services. This accurate prediction of web services instances is used to perform the selection of web services. We propose to construct fuzzy rules to label web services instances correctly. This paper presents web services selection using a well-known machine learning algorithm, namely REPTree, for the correct prediction of trusted and untrusted instances. Performance comparison of REPTree with five machine learning models is conducted on web services datasets. We have performed experiments on web services datasets using a ten k-fold cross-validation method. To evaluate the performance of the REPTree classifier, we used accuracy metrics (Sensitivity and Specificity). Experimental results showed that web service (WS1) gained top selection score with the (47.0588%) trusted instances, and web service (WS2) was selected the least with (25.00%) trusted instances. Evaluation results of the proposed web services selection approach were found as (asymptotic sig. = 0.019), demonstrating the relationship between final selection and recommended trust score of web services.

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.