• Title/Summary/Keyword: Classifier algorithm

Search Result 722, Processing Time 0.03 seconds

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

A two-stage cascaded foreground seeds generation for parametric min-cuts

  • Li, Shao-Mei;Zhu, Jun-Guang;Gao, Chao;Li, Chun-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5563-5582
    • /
    • 2016
  • Parametric min-cuts is an object proposal algorithm, which can be used for accurate image segmentation. In parametric min-cuts, foreground seeds generation plays an important role since the number and quality of foreground seeds have great effect on its efficiency and accuracy. To improve the performance of parametric min-cuts, this paper proposes a new framework for foreground seeds generation. First, to increase the odds of finding objects, saliency detection at multiple scales is used to generate a large set of diverse candidate seeds. Second, to further select good-quality seeds, a two-stage cascaded ranking classifier is used to filter and rank the candidates based on their appearance features. Experimental results show that parametric min-cuts using our seeding strategy can obtain a relative small pool of proposals with high accuracy.

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

Multivariate Auxiliary Channel Classification using Artificial Neural Networks for LIGO Gravitational-Wave Detector

  • Oh, Sang-Hoon;Oh, John J.;Kim, Young-Min;Lee, Chang-Hwan;Vaulin, Ruslan;Hodge, Kari;Katsavounidis, Erik;Blackburn, Lindy;Biswas, Rahul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.131.2-131.2
    • /
    • 2011
  • We present performance of artificial neural network multivariate classifier in identifying non-astrophysical origin noise transients from the gravitational wave channel of Laser Interferometer Gravitational-wave Observatory (LIGO). LIGO has successfully conducted six science runs, achieving the sensitivity as planned and producing many fruitful scientific results. It has been well observed that the detector noise is non-Gaussian and non-stationary, which results in large excess of noise transients called glitches arising from instrumental and environmental artifacts. Great efforts have been committed to reduce the glitches by tuning the detector instruments and by vetoing them but further improvement is still needed. To this end, there have been efforts to incorporate data from hundreds of auxiliary, physical and environmental channels into identifying the glitches in the gravitational wave channel. We introduce a multivariate classification method using Artificial Neural Networks (ANNs) that efficiently handles large number of variables. In this poster, we present preliminary results of the application of our ANN algorithm to data from LIGO's Science Run 4 and compare its performance with conventional vetoing method.

  • PDF

Gestures Recognition for Smart Device using Contact less Electronic Potential Sensor (스마트 장치에서 비접촉식 전위계차 센서 신호를 이용한 동작 인식 기법)

  • Oh, KangHan;Kim, Soohyung;Na, Inseop;Kim, Young Chul;Moon, Changhub
    • Smart Media Journal
    • /
    • v.3 no.2
    • /
    • pp.14-19
    • /
    • 2014
  • This paper presents a novel approach to recognize human gestures using k-NN and DTW based on Con tactless Electronic Potential Sensor(CEPS) in the smart devices such as smart TV and smart-phone in the proposed method, we used a Kalman filter to remove noise on gesture signal from CEPS and a PCA algorithm is utilized for reducing the dimensionality of gesture signal without data losses. And then in order to categorize gesture signals, k-NN classifier with DTW distance measure is considered. In the experimental result, we evaluate recognition performance with CEPS gesutres signal form the above two types of smart devices, and we can successfully identify five different gestures with more than 90% of recognition accuracy.

Spare Representation Learning of Kernel Space Using the Kernel Relaxation Procedure (커널 이완 절차에 의한 커널 공간의 저밀도 표현 학습)

  • 류재홍;정종철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.817-821
    • /
    • 2001
  • In this paper, a new learning methodology for kernel methods that results in a sparse representation of kernel space from the training patterns for classification problems is suggested. Among the traditional algorithms of linear discriminant function, this paper shows that the relaxation procedure can obtain the maximum margin separating hyperplane of linearly separable pattern classification problem as SVM(Support Vector Machine) classifier does. The original relaxation method gives only the necessary condition of SV patterns. We suggest the sufficient condition to identify the SV patterns in the learning epoches. For sequential learning of kernel methods, extended SVM and kernel discriminant function are defined. Systematic derivation of learning algorithm is introduced. Experiment results show the new methods have the higher or equivalent performance compared to the conventional approach.

  • PDF

Improvement of Face Recognition Speed Using Pose Estimation (얼굴의 자세추정을 이용한 얼굴인식 속도 향상)

  • Choi, Sun-Hyung;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.677-682
    • /
    • 2010
  • This paper addresses a method of estimating roughly the human pose by comparing Haar-wavelet value which is learned in face detection technology using AdaBoost algorithm. We also presents its application to face recognition. The learned weak classifier is used to a Haar-wavelet robust to each pose's feature by comparing the coefficients during the process of face detection. The Mahalanobis distance is used to measure the matching degree in Haar-wavelet selection. When a facial image is detected using the selected Haar-wavelet, the pose is estimated. The proposed pose estimation can be used to improve face recognition speed. Experiments are conducted to evaluate the performance of the proposed method for pose estimation.

Development of ResNet-based WBC Classification Algorithm Using Super-pixel Image Segmentation

  • Lee, Kyu-Man;Kang, Soon-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC. A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis. Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%. Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field. WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.

A Feature Vector Extraction Method For the Automatic Classification of Power Quality Disturbances (전력 외란 자동 식별을 위한 특징 벡터 추출 기법)

  • Lee, Chul-Ho;Lee, Jae-Sang;Cho, Kwan-Young;Chung, Ji-Hyun;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.404-406
    • /
    • 1996
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FFT, DWT(Discrete Wavelet Transform), and data compression are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 7-class power quality disturbances generated by the EMTP are also provided.

  • PDF