• Title/Summary/Keyword: Classifier algorithm

Search Result 722, Processing Time 0.033 seconds

Efficient Markov Feature Extraction Method for Image Splicing Detection (접합영상 검출을 위한 효율적인 마코프 특징 추출 방법)

  • Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.111-118
    • /
    • 2014
  • This paper presents an efficient Markov feature extraction method for detecting splicing forged images. The Markov states used in our method are composed of the difference between DCT coefficients in the adjacent blocks. Various first-order Markov state transition probabilities are extracted as features for splicing detection. In addition, we propose a feature reduction algorithm by analysing the distribution of the Markov probability. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. Experimental results verify that the proposed method shows good detection performance with a smaller number of features compared to existing methods.

A Study on Correcting Korean Pronunciation Error of Foreign Learners by Using Supporting Vector Machine Algorithm

  • Jang, Kyungnam;You, Kwang-Bock;Park, Hyungwoo
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.316-324
    • /
    • 2020
  • It has experienced how difficult People with foreign language learning, it is to pronounce a new language different from the native language. The goal of various foreigners who want to learn Korean is to speak Korean as well as their native language to communicate smoothly. However, each native language's vocal habits also appear in Korean pronunciation, which prevents accurate information transmission. In this paper, the pronunciation of Chinese learners was compared with that of Korean. For comparison, the fundamental frequency and its variation of the speech signal were examined and the spectrogram was analyzed. The Formant frequencies known as the resonant frequency of the vocal tract were calculated. Based on these characteristics parameters, the classifier of the Supporting Vector Machine was found to classify the pronunciation of Koreans and the pronunciation of Chinese learners. In particular, the linguistic proposition was scientifically proved by examining the Korean pronunciation of /ㄹ/ that the Chinese people were not good at pronouncing.

A Fault Diagnosis Based on Multilayer/ART2 Neural Networks (다층/ART2 신경회로망을 이용한 고장진단)

  • Lee, In-Soo;Yu, Du-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.830-837
    • /
    • 2004
  • Neural networks-based fault diagnosis algorithm to detect and isolate faults in the nonlinear systems is proposed. In the proposed method, the fault is detected when the errors between the system output and the multilayer neural network-based nominal model output cross a Predetermined threshold. Once a fault in the system is detected, the system outputs are transferred to the fault classifier by nultilayer/ART2 NN (adaptive resonance theory 2 neural network) for fault isolation. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.

Active Sonar Target Recognition Using Fractional Fourier Transform (Fractional Fourier 변환을 이용한 능동소나 표적 인식)

  • Seok, Jongwon;Kim, Taehwan;Bae, Geon-Seong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2505-2511
    • /
    • 2013
  • Many studies in detection and classification of the targets in the underwater environments have been conducted for military purposes, as well as for non-military purpose. Due to the complicated characteristics of underwater acoustic signal reflecting multipath environments and spatio-temporal varying characteristics, active sonar target classification technique has been considered as a difficult technique. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using neural network classifier.

Presentation control of the computer using the motion identification rules (모션 식별 룰을 이용한 컴퓨터의 프레젠테이션 제어)

  • Lee, Sang-yong;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.586-589
    • /
    • 2015
  • A computer presentation system by using hand-motion identification rules is proposed. To identify hand motions of a presenter, a face region is extracted first using haar classifier. A motion status(patterns) and position of hands is discriminated using the center of gravities of user's face and hand after segmenting the hand area on the YCbCr color model. User's hand is applied to the motion detection rules and then presentation control command is then executed. The proposed system utilizes the motion identification rules without the use of additional equipment and it is then capable of controlling the presentation and does not depend on the complexity of the background. The proposed algorithm confirmed the stable control operation via the presentation of the experiment in the dark illumination range of indoor atmosphere (lx) 15-20-30.

  • PDF

SEMISUPERVISED CLASSIFICATION FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANTS

  • MA, JIANPING;JIANG, JIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.176-186
    • /
    • 2015
  • Pattern classifications have become important tools for fault diagnosis in nuclear power plants (NPP). However, it is often difficult to obtain training data under fault conditions to train a supervised classification model. By contrast, normal plant operating data can be easily made available through increased deployment of supervisory, control, and data acquisition systems. Such data can also be used to train classification models to improve the performance of fault diagnosis scheme. In this paper, a fault diagnosis scheme based on semisupervised classification (SSC) scheme is developed. In this scheme, new measurements collected from the plant are integrated with data observed under fault conditions to train the SSC models. The trained models are subsequently applied to new measurements for fault diagnosis. In comparison with supervised classifiers, the proposed scheme requires significantly fewer data collected under fault conditions to train the classifier. The developed scheme has been validated using different fault scenarios on a desktop NPP simulator as well as on a physical NPP simulator using a graph-based SSC algorithm. All the considered faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis in NPPs.

Multimodal Emotion Recognition using Face Image and Speech (얼굴영상과 음성을 이용한 멀티모달 감정인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 2012
  • A challenging research issue that has been one of growing importance to those working in human-computer interaction are to endow a machine with an emotional intelligence. Thus, emotion recognition technology plays an important role in the research area of human-computer interaction, and it allows a more natural and more human-like communication between human and computer. In this paper, we propose the multimodal emotion recognition system using face and speech to improve recognition performance. The distance measurement of the face-based emotion recognition is calculated by 2D-PCA of MCS-LBP image and nearest neighbor classifier, and also the likelihood measurement is obtained by Gaussian mixture model algorithm based on pitch and mel-frequency cepstral coefficient features in speech-based emotion recognition. The individual matching scores obtained from face and speech are combined using a weighted-summation operation, and the fused-score is utilized to classify the human emotion. Through experimental results, the proposed method exhibits improved recognition accuracy of about 11.25% to 19.75% when compared to the most uni-modal approach. From these results, we confirmed that the proposed approach achieved a significant performance improvement and the proposed method was very effective.

Lane Marking Detection of Mobile Robot with Single Laser Rangefinder (레이저 거리 센서만을 이용한 자율 주행 모바일 로봇의 도로 위 정보 획득)

  • Jung, Byung-Jin;Park, Jun-Hyung;Kim, Taek-Young;Kim, Deuk-Young;Moon, Hyung-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.521-525
    • /
    • 2011
  • Lane marking detection is one of important issues in the field of autonomous mobile robot. Especially, in urban environment, like pavement roads of downtown or tour tracks of Science Park, which have continuous patterns on the surface of the road, the lane marking detection becomes more important ability. Although there were many researches about lane detection and lane tracing, many of them used vision sensors mainly to detect lane marking. In this paper, we obtain 2 dimensional library data of 'Intensity' and 'Distance' using one laser rangefinder only. We design a simple classifier and filtering algorithm for the lane detection which uses only one LRF (Laser Range Finder). Allowing extended usage of LRF, this research provides more functionality not only in range finding but also in lane detecting to mobile robots. This work will be technically helpful for robot developers to design more simple and efficient autonomous driving system using LRF.

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

HKIB-20000 & HKIB-40075: Hangul Benchmark Collections for Text Categorization Research

  • Kim, Jin-Suk;Choe, Ho-Seop;You, Beom-Jong;Seo, Jeong-Hyun;Lee, Suk-Hoon;Ra, Dong-Yul
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.165-180
    • /
    • 2009
  • The HKIB, or Hankookilbo, test collections are two archives of Korean newswire stories manually categorized with semi-hierarchical or hierarchical category taxonomies. The base newswire stories were made available by the Hankook Ilbo (The Korea Daily) for research purposes. At first, Chungnam National University and KISTI collaborated to manually tag 40,075 news stories with categories by semi-hierarchical and balanced three-level classification scheme, where each news story has only one level-3 category (single-labeling). We refer to this original data set as HKIB-40075 test collection. And then Yonsei University and KISTI collaborated to select 20,000 newswire stories from the HKIB-40075 test collection, to rearrange the classification scheme to be fully hierarchical but unbalanced, and to assign one or more categories to each news story (multi-labeling). We refer to this modified data set as HKIB-20000 test collection. We benchmark a k-NN categorization algorithm both on HKIB-20000 and on HKIB-40075, illustrating properties of the collections, providing baseline results for future studies, and suggesting new directions for further research on Korean text categorization problem.