• Title/Summary/Keyword: Classifier System

Search Result 762, Processing Time 0.025 seconds

Design and Implementation of an Automated Fruit Quality Classification System

  • Choi, Han Suk
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.37-43
    • /
    • 2018
  • Most of fruit quality classification has been done by time consuming, inaccurate and intensive manual labor. This study proposed an automated fruit grading system based on appearances and internal flavors. In this study, image processing technique and a weight checker were used to measure the value of appearance features and the near infrared spectroscopy analysis method was used to estimate the value of internal flavors. Additionally, I suggested 8x8x5x5 ANN based fruit quality classifier model to grade fruits quality. The proposed automated fruit quality classification system is expected to be very beneficial for many farms where heavy manual labor is usually needed for fruit quality classification.

Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition (2차원 불변 영상 인식을 위한 퍼지 분류기와 바이스펙트럼)

  • 한수환;우영운
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.241-252
    • /
    • 2000
  • In this paper, a translation, rotation and scale invariant system for the recognition of closed 2-D images using the bispectrum of a contour sequence and a weighted fuzzy classifier is derived and compared with the recognition process using one of the competitive neural algorithm, called a LVQ( Loaming Vector Quantization). The bispectrum based on third order cumulants is applied to the contour sequences of an image to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to the represent two-dimensional planar images and are fed into a weighted fuzzy classifier. The experimental processes with eight different shapes of aircraft images are presented to illustrate a relatively high performance of the proposed recognition system.

  • PDF

Rejection Study of Mearest Meighbor Classifier for Diagnosis of Rotating Machine Fault (회전기계 고장 진단을 위한 최근접 이웃 분류기의 기각 전략)

  • 최영일;박광호;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Rotating machine is used extensively and plays important roles in the industrial field. Therefore when rotating machine get out of order, it is necessary to know reasons then deal with the troubles immediately. So many studies far diagnosis of rotating machine are being done. However by this time most of study has an interest in gaining a high recognition But without considering error $rate^{(1)(2)(3)}$ , it is not desirable enough to apply h the actual application system. If the manager of system receives the result misjudging the condition of rotating machine and takes measures, we would lose heavily. So in order to play the creditable diagnosis, we must consider error rate. T h ~ t is. it must be able to reject the result of misjudgment. This study uses nearest neighbor classifier for diagnosis of rotating $machine^{(4)(8)}$ And the Smith's rejection $method^{(1)}$ used to recognize handwritten charter is done. Consequently creditable diagnosis of rotating machine is proposed.

  • PDF

Design of Gas Classifier Based On Artificial Neural Network (인공신경망 기반 가스 분류기의 설계)

  • Jeong, Woojae;Kim, Minwoo;Cho, Jaechan;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.700-705
    • /
    • 2018
  • In this paper, we propose the gas classifier based on restricted column energy neural network (RCE-NN) and present its hardware implementation results for real-time learning and classification. Since RCE-NN has a flexible network architecture with real-time learning process, it is suitable for gas classification applications. The proposed gas classifier showed 99.2% classification accuracy for the UCI gas dataset and was implemented with 26,702 logic elements with Intel-Altera cyclone IV FPGA. In addition, it was verified with FPGA test system at an operating frequency of 63MHz.

Acute Leukemia Classification Using Sequential Neural Network Classifier in Clinical Decision Support System (임상적 의사결정지원시스템에서 순차신경망 분류기를 이용한 급성백혈병 분류기법)

  • Lim, Seon-Ja;Vincent, Ivan;Kwon, Ki-Ryong;Yun, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.174-185
    • /
    • 2020
  • Leukemia induced death has been listed in the top ten most dangerous mortality basis for human being. Some of the reason is due to slow decision-making process which caused suitable medical treatment cannot be applied on time. Therefore, good clinical decision support for acute leukemia type classification has become a necessity. In this paper, the author proposed a novel approach to perform acute leukemia type classification using sequential neural network classifier. Our experimental result only cover the first classification process which shows an excellent performance in differentiating normal and abnormal cells. Further development is needed to prove the effectiveness of second neural network classifier.

On-Line Linear Combination of Classifiers Based on Incremental Information in Speaker Verification

  • Huenupan, Fernando;Yoma, Nestor Becerra;Garreton, Claudio;Molina, Carlos
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.395-405
    • /
    • 2010
  • A novel multiclassifier system (MCS) strategy is proposed and applied to a text-dependent speaker verification task. The presented scheme optimizes the linear combination of classifiers on an on-line basis. In contrast to ordinary MCS approaches, neither a priori distributions nor pre-tuned parameters are required. The idea is to improve the most accurate classifier by making use of the incremental information provided by the second classifier. The on-line multiclassifier optimization approach is applicable to any pattern recognition problem. The proposed method needs neither a priori distributions nor pre-estimated weights, and does not make use of any consideration about training/testing matching conditions. Results with Yoho database show that the presented approach can lead to reductions in equal error rate as high as 28%, when compared with the most accurate classifier, and 11% against a standard method for the optimization of linear combination of classifiers.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

An Implementation of Neuro-Fuzzy Based Land Convert Pattern Classification System for Remote Sensing Image (뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴 분류시스템 구현)

  • 이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.472-479
    • /
    • 1999
  • In this paper, we propose a land cover pattern classifier for remote sensing image by using neuro-fuzzy algorithm. The proposed pattem classifier has a 3-layer feed-forward architecture that is derived from generic fuzzy perceptrons, and the weights are con~posed of h u y sets. We also implement a neuro-fuzzy pattern classification system in the Visual C++ environment. To measure the performance of this, we compare it with the conventional neural networks with back-propagation learning and the Maximum-likelihood algorithms. We classified the remote sensing image into the eight classes covered the majority of land cover feature, selected the same training sites. Experimental results show that the proposed classifier performs well especially in the mixed composition area having many classes rather than the conventional systems.

  • PDF

Pest Control System using Deep Learning Image Classification Method

  • Moon, Backsan;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • In this paper, we propose a layer structure of a pest image classifier model using CNN (Convolutional Neural Network) and background removal image processing algorithm for improving classification accuracy in order to build a smart monitoring system for pine wilt pest control. In this study, we have constructed and trained a CNN classifier model by collecting image data of pine wilt pest mediators, and experimented to verify the classification accuracy of the model and the effect of the proposed classification algorithm. Experimental results showed that the proposed method successfully detected and preprocessed the region of the object accurately for all the test images, resulting in showing classification accuracy of about 98.91%. This study shows that the layer structure of the proposed CNN classifier model classified the targeted pest image effectively in various environments. In the field test using the Smart Trap for capturing the pine wilt pest mediators, the proposed classification algorithm is effective in the real environment, showing a classification accuracy of 88.25%, which is improved by about 8.12% according to whether the image cropping preprocessing is performed. Ultimately, we will proceed with procedures to apply the techniques and verify the functionality to field tests on various sites.

Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier (복합 특징과 결합 인식기에 의한 필기체 숫자인식)

  • 박중조;송영기;김경민
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • Off-line handwritten numeral recognition is a very difficult task and hard to achieve high recognition results using a single feature and a single classifier, since handwritten numerals contain many pattern variations which mostly depend upon individual writing styles. In this paper, we propose handwritten numeral recognition system using hybrid features and combined classifier. To improve recognition rate, we select mutually helpful features -directional features, crossing point feature and mesh features- and make throe new hybrid feature sets by using these features. These hybrid feature sets hold the local and global characteristics of input numeral images. And we implement combined classifier by combining three neural network classifiers to achieve high recognition rate, where fuzzy integral is used for multiple network fusion. In order to verify the performance of the proposed recognition system, experiments with the unconstrained handwritten numeral database of Concordia University, Canada were performed. As a result, our method has produced 97.85% of the recognition rate.

  • PDF