• Title/Summary/Keyword: Classification of vegetation community

Search Result 231, Processing Time 0.021 seconds

Vegetation Structure of Deciduous Broad-leaved Forest at the Beomeosa(Temple) Valley in Kumjungsan, Busan (부산 금정산 범어사계곡 낙엽활엽수림의 식생구조)

  • Kim, Jeong-Ho;Choi, Song-Hyun;Choi, In-Tae;Yang, Soon-Ja;Lee, Sang-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • The purpose of this study is to investigate the structure of vegetation dominated by deciduous broad-leaved trees at the Beomeosa(Temple) Valley of Mt. Kumjungsan in Busan. To this end, 28 plots were set up and surveyed. The result analyzed by TWINSPAN, one of the classification technique, showed that the communities were divided into six groups which are Carpinus tschonoskii-Deciduous broad-leaved forest community(I), Quercus serrata-C. tschonoskii community(II), C. tschonoskii-Q.s serrata-Pinus densiflora community(III), C. tschonoskii-Quercus serrata-Q. mongolica communtiy(IV), Q. serrata-Deciduous broadleaved forest community(V) and Chamaecyparis obtusa-C. tschonoskii community (VI). Species diversity ranged from 0.3832 to 0.0450. The lowest diversity was Chamaecyparis obtusa community(VI) but the highest was Carpinus tschonoskii-Deciduous broad-leaved forest community(I) and Q. serrata-Deciduous broadleaved forest community(V). The average number of species was 6.8${\pm}$3.2 in the unit area(100$m^2$). Carpinus tschonoskii community at the Beomeosa Valley of Mt. Geumjeongsan was a climatic climax forest having a value to preserve, so a continuous management will be needed.

Community Structure and Floristic Composition of Cymbidium goeringii Group in Korean Islets (한반도 도서지역 춘란집단의 종조성과 군락구조)

  • Song, Hong-Seon;Park, Yong-Jin
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.2
    • /
    • pp.110-116
    • /
    • 2010
  • This text was analyzed and investigated the vegetation and floristic composition by ordination and classification of phytosociological method, to evaluate the species composition and community structure of Cymbidium goeringii group in Korean islets. In habitat of 33 plots, the mean altitude was 65.9m, the direction was the southeast slope, the mean slope was 7.9%. The coverage of Cymbidium goeringii was 4.5%. The appearing plants with the Cymbidium goeringii was the total 102 taxa, and it was the kind of trees 68 taxa (66.7%), herbs 34 taxa (33.3%), evergreen plants 36 taxa (35.3%) and deciduous plants 66 taxa (64.7 %) respectively. The frequency of appearing plant was the highest in the Eurya japonica (48.5%), followed by Pinus thunbergii (45.5%), Smilax china (36.4%), Carex lanceolata (33.3%), Hedera rhombea (33.3%), Machilus thunbergii (30.0%), Styrax japonicus (30.3%) and Pinus densiflora (27.3%), respectively. The vegetation of tree layer in Cymbidium goeringii group was classified into Pinus thunbergii community, Pinus densiflora community, Castanopsis sieboldii community and Quercus variabilis community. Pinus densiflora community showed a strong combination with Cymbidium goeringii group in Korean islets. Pinus thunbergii community among communities was combined with Castanopsis sieboldii community, and Pinus densiflora community and Quercus variabilis community were combined.

Structure of Forest Community in Mt. Busosan, Buyeo-Gun (부여군 부소산의 산림군락 구조)

  • Cheong, Yongmoon;Kim, Dongseok;Kim, Kwangdong;Lee, Sanghwa;Song, Hokyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 2006
  • This study was carried out to analyze community character and classify forest community with phytosociological method and quadrat method to forest of Mt. Busosan in Buyeo-Gun.1. Communities by phytosociological method were classified into Pinus densiflora community and Quercus sp. community. With the classification of TWINSPAN, the community was categorized into Pinus densiflora - Quercus variabilis community and Pinus densiflora - Styrax japonica community.2. The importance value of Pinus densiflora, Quercus acutissima, Prunus sargentii, Styrax japonica, Quercus serrata, Quercus variabilis, Pinus rigida, Quercus aliena in tree layer were 83.20, 41.87, 30.93, 24.85, 23.27, 20.97, 20.28, and 9.46, respectively. The relative coverage of Stephanandra incisa, Quercus serrata, Styrax japonica, Parthenocissua tricuspidata, Rhododendron mucronulatum, Lindera obtusiloba, Prunus sargentii, Quercus variabilis, Indigofera kirilowii, Quercus acutissima, Lespedeza maximowiczii, and Acer pseudosibolianum in shrub layer were 9.62%, 9.55%, 9.18%, 7.85%, 6.18%, 5.25%, 4.82%, 4.15%, 3.98%, 3.98%, 3.55%, and 2.98%, respectively.3. According to size distribution map of diameter breast height of dominant species, the dominant species of Mt. Busosan was Pinus densiflora, and Quercus sp. such as Quercus acutissima, Quercus variabilis, and Quercus serrata may compete with the Pinus densiflora in the future.4. According to the ordination analysis of Mt. Busosan forest, Pinus densiflora - Styrax japonica community was found in moist site and Pinus densiflora - Quercus variabilis community was found in dry site.

Vegetation Characteristics of Ridge in the Seonunsan Provincial Park (선운산도립공원의 능선부 식생 특성)

  • Kang, Hyun-Mi;Park, Seok-Gon;Kim, Ji-Suk;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.75-85
    • /
    • 2019
  • The purpose of this study is to understand the vegetation characteristics of ridges (Gyeongsusan-Seonunsan-Gaeipalsan) in the Seonunsan Provincial Park and to establish reference information for the management of the park in the future. We designated 62 plots with the area of $100m^2$ were installed and analyzed them to investigate the vegetation characteristics. The results of community classification based on TWINSPAN showed seven categories of vegetation communities in the surveyed region: Quercus dentata-Deciduous broad-leaved Community, Quercus variabilis-Pinus thunbergii-Quercus serrata Community, Pinus densiflora Community, Deciduous broad-leaved Community-I, Carpinus tschonoskii-Castanea crenata-Quercus aliena Community, Deciduous broad-leaved Community-II, and Carpinus tschonoskii-Carpinus laxiflora Community. In the vegetation of Seonunsan Provincial Park, coniferous trees such as Pinus thunbergii and Pinus densiflora have been gradually losing their population as part of ecological succession to deciduous broad-leaved trees such as Quercus spp., Carpinus tschonoskii, and Carpinus laxiflora. Moreover, Carpinus turczaninowii, Mallotus japonicus, and others were identified as vegetation reflecting the geographical characteristics of the region neighboring the west coast. The estimated age is 30-60 years, and the oldest tree Pinus densiflora is 63-years old. The index of diversity ($100m^2$) was 0.7942 for Carpinus tschonoskii-Carpinus laxiflora Community, 0.8406 for Carpinus tschonoskii-Castanea crenata-Quercus aliena Community, 0.8543 for Quercus dentata-Deciduous broad-leaved Community, 0.9434 for Quercus variabilis-Pinus thunbergii-Quercus serrata Community, 0.9520 for Deciduous broad-leaved Community-I, 0.9633 for Pinus densiflora Community, and 1.0340 for Deciduous broad-leaved Community-II in the ascending order.

Study on the Distribution of Plant Community in the Deogyusan National Park (덕유산 국립공원 일대의 식물군락 분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Choi, Young-Eun;Lee, Nam-Sook;Kang, Eun-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.570-580
    • /
    • 2013
  • The forest vegetation of the Deogyusan National Park is classified into mountain forest vegetation and riparian forest vegetation. Mountain forest vegetation in the forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, shrub forest, afforestation and other vegetation. Including 192 communities of mountain forest vegetation and 3 communities of other vegetation, the total of 195 communities were researched; the distributed colonies classified by physiognomy classification are 61 communities deciduous broad-leaved forest, 55 communities of valley forest, 17 communities of coniferous forests, 6 communities of subalpine coniferous forest, 3 communities of shrub forest, 50 afforestation and 3 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 66.00 percent of deciduous broad-leaved forest, Fraxinus mandshurica, Cornus controversa community takes up 64.40 percent of mountain valley forest, Pinus densiflora community holds 70.40 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Geochilbong in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Community Distribution on Mountain Forest Vegetation of the Noinbong Area in the Odaesan National Park, Korea (오대산 국립공원 노인봉 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Choi, Young-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • Forest vegetation of Noinbong (1,338 m) in Odaesan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, shrub forest, riparian forest, afforestation and other vegetation. Including 196 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 203 communities were researched; mountain forest vegetation classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 85 communities of mountain valley forest, 18 communities of coniferous forests, 3 communities of subalpine coniferous forests, 4 communities of subapine deciduous forests, 2 communities of shrub forests, 1 communities of riparian forests, 21 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 54.856 percent of deciduous broad-leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 15.482 percent of mountain valley forest, Pinus densiflora community holds 78.091 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Tilia amurensis, Fraxinus mandshurica, Cornus controversa, Quercus serrata, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

Community Distribution on Mountain Forest Vegetation of the Hwangjangsan Area in the Worak National Park, Korea (월악산국립공원 황장산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 2015
  • Forest vegetation of Hwangjangsan (1,077.3 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 55 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 59 communities were researched; mountain forest vegetation classified by physiognomy classification are 28 communities deciduous broad-leaved forest, 12 communities of mountain valley forest, 3 communities of coniferous forests, 2 communities of riparian forest, 10 afforestation and 4 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica and Quercus variabilis communities account for 65.928 percent of deciduous broad leaved forest, Fraxinus rhynchophylla - Quercus mongolica community takes up 41.459 percent of mountain valley forest, Pinus densiflora community holds 86.100 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus rhynchophylla, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis, and Fraxinus rhynchophylla which are climax species in the area.

Community Distribution on Mountain Forest Vegetation of the Youngbong Area in the Worak National Park, Korea (월악산국립공원 영봉 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jang, In-Soo;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.51-60
    • /
    • 2015
  • Forest vegetation of Youngbong (1,094 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 84 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 91 communities were researched; mountain forest vegetation classified by physiognomy classification are 39 communities deciduous broad-leaved forest, 26 communities of mountain valley forest, 6 communities of coniferous forests, 2 communities of riparian forests, 11 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis communities account for 40.879 percent of deciduous broad leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 25.627 percent of mountain valley forest, Pinus densiflora community holds 75.618 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus mandshurica, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis and Fraxinus mandshurica which are climax species in the area.

A Study of the Development of Wetland Database for the Nakdong River Estuary using GIS and RS (GIS와 원격탐사를 이용한 낙동강 하구 습지 데이터베이스 구축에 관한 연구)

  • Yi, Gi-Chul;Yoon, Hae-Soon;Kim, Seung-Hwan;Nam, Chun-Hee;Ok, Jin-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.1-15
    • /
    • 1999
  • This study was carried out to find out the way to build a comprehensive wetland ecosystem database using the technique of remote sensing and geographic information system. A Landsat TM image taken in May 17, 1997 was used for the primary source for the image analysis. Field surveys were conducted March to September of 1998 to help image analysis and examine the results. An actual wetland vegetation map was created based on the field survey. A Landsat TM image was analyzed by unsupervised and supervised classification methods and finally categorized into such 5 classes as Phragmites australis community, mixed community, sand beach, Scirpus trigueter community and non-vegetation intertidal area. Wetland basemap was developed for the overall accuracy assesment in wetland mapping. Vegetation index map of wetland vegetation was developed using NDVI(normalized difference vegetation index). The map of wetland productivity was developed based on the productivity of Phragmites australis and the relationship to the proximity of adjacent water bodies. The map of potential vegetation succession map was also developed based on the experience and knowledge of the field biologists. Considering these results, it is possible to use the remote sensing and GIS techniques for producing wetland ecosystem database. This study indicated that these techniques are very effective for the development of the national wetland inventory in Korea.

  • PDF

Flora and Vegetation Structure in a 15-Year-Old Artificial Wetland (조성 후 15년이 경과한 인공습지의 식물상과 식생구조)

  • Son, Deokjoo;Lee, Hyohyemi;Lee, Eun Ju;Cho, Kang-Hyun;Kwon, Dongmin
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • This study was conducted to investigate the flora and vegetation structure at a 15-year-old artificial wetland for the water purification in Jincheon, Korea. The percentage of species number of obligate wetland plants and facultative wetland plants totaled 40%, whereas that of obligate upland plants and facultative upland plants was 57%. This result showed that the artificial wetland in the study experienced terrestrialization. The number of annual and biennial plants that are pioneer vegetation in a successional stage was lower than that of perennial herbs as a result of the long-term stabilization of vegetation. From the results of DCA (detrended correspondence analysis), water depth played an important role on the classification of vegetation structure in an old artificial wetland. Species diversity was higher in the terrestrialized plant communities such as Iris pseudacorus and Aster koraiensis than in any other wetland communities. Plant communities could be classified according to the wetland indices; obligate upland for A. koraiensis community, facultative wetlands for Carex dispalata var. dispalata and I. pseudacorus community, and obligate wetlands for Nymphoides peltata, Nymphaea tetragona, Phragmites communis, Potamogeton maackianus, and Typha angustifolia community. In conclusion, this result suggests that wetland vegetation should be maintained against terrestrialization through the proper management of sedimentation and hydrological regime in an artificial wetland.