• 제목/요약/키워드: Classification of Scheme

검색결과 839건 처리시간 0.026초

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교 (Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification)

  • 윤협상;정석봉
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

3GPP2 SMV의 실시간 유/무성음 분류 성능 향상을 위한 Gaussian Mixture Model 기반 연구 (Enhancement Voiced/Unvoiced Sounds Classification for 3GPP2 SMV Employing GMM)

  • 송지현;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제45권5호
    • /
    • pp.111-117
    • /
    • 2008
  • 본 논문에서는 패턴 인식에서 우수한 성능을 보이는 가우시안 혼합모델 (Gaussian mixture model, GMM)을 이용하여 비정상적인 잡음환경에서 3GPP2 selectable mode vocoder (SMV)의 유/무성음 분류 알고리즘 성능 향상을 위한 방법을 제안한다. 기존의 SMV에 대해서 분석하고, 이론 기반으로 유/무성음 분류 알고리즘에서 우수한 성능을 보여주는 특징 벡터를 선택하여 GMM의 입력벡터로 효과적으로 이용한다 다양한 잡음환경에서 시스템의 성능을 평가한 결과 GMM을 이용한 제안된 방법이 기존의 SMV의 방법보다 우수한 유/무성음 분류 성능을 보였다.

병영 생활관 시설 분류 개선에 관한 연구 - 육·해·공·해병대 설문 조사 및 군 간부 면담 조사를 중심으로 - (Study on facility classification development of Military Barracks - Focusing on the questionnaire survey and military officials' interview of the army, navy, air force and Marine -)

  • 성이용;이상호
    • 한국실내디자인학회논문집
    • /
    • 제22권1호
    • /
    • pp.19-27
    • /
    • 2013
  • The objective of this study was to establish Facility classification for military barracks among military facilities. The military barracks are the place where soldiers spend most of their time. Thus, a new type of space in military barracks is required to improve the quality of life of the soldiers and make the military more advanced for national defense. The research method was to derive problems through a survey of the previous literature and case studies and to select target places in the Army, Navy, Air Force, and Marine based on the derived problems. An improvement scheme was proposed by developing criteria for military barracks spaces through a questionnaire survey. The following results were obtained: Facility classification inside of national defense military facility standard should be reorganized. The alternative plan is demanded for some camp which has no need about setting up the office facility. And the study of reasonable facility area after improvementing facility categorization is required.

다양한 어휘 가중치를 이용한 블로그 포스트의 자동 분류 (Automatic Classification of Blog Posts using Various Term Weighting)

  • 김수아;조희선;이현아
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.58-62
    • /
    • 2015
  • 대부분의 블로그 사이트에서는 미리 정의된 분류 체계에 따른 내용 기반 분류 환경을 제공하고 있으나, 작성된 포스트의 분류를 수동으로 선택해야하는 번거로움 때문에 대부분의 블로거들은 포스트에 대한 분류를 입력하지 않고 있다. 본 논문에서는 블로그 포스트의 자동 분류를 위해 블로그 사이트에서 분류별 문서를 수집하고 수집된 분류별 문서의 어휘빈도와 문서빈도, 분류별 빈도 등의 다양한 어휘 가중치 조합하여 블로그 포스트의 특성에 적합한 가중치 방식을 찾고자 한다. 실험에서는 본 논문에서 제안한 TF-CTF-IECDF를 어휘 가중치로 사용한 분류 모델이 77.02%의 분류 정확률을 보였다.

소프트웨어 부품의 재사용을 위한 개선된 패싯 분류 방법과 의미 유사도 측정 (Advanced Faceted Classification Scheme and Semantic Similarity Measure for Reuse of Software Components)

  • 강문설
    • 한국정보처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.855-865
    • /
    • 1996
  • 본 논문에서는 재사용가능한 소프트웨어 부품의 분류 과정을 자동화하여, 소프트 웨어 부품 라이브러리에 구조적으로 저장하는 방안을 제안한다. 효율적이고 자동화 된 소프트웨어 부품의 분류를 위하여 자연어로 기술된 소프트웨어 부품 설명서로부터 의미 정보와 문장 구성 정보 등의 특징을 획득하여 소프트웨어 부품의 특성을 표현하 는 패싯을 결정하고각각의 패싯에 해당하는 항목들을 자동으로 추출하여 소프트웨어 부품 식별자를 구성하였다. 그리고 분류된 소프트웨어 부품들 사이의 의미 유사도를 측정하여 비슷한 특성을 갖는 소프트웨어 부품들을 인접한 장소에 저장시켜 구조화된 소프트웨어 부품 라이브러리를 구축하였다. 제안한 방법은 소프트웨어 부품의 분류 과정이 간단하고, 유사한 소프트웨어 부품을 쉽게 식별할 수 있었으며, 또한 소프트 웨어 부품을 라이브러리에 구조적으로 저장할 수 있다.

  • PDF

UDC의 적용분야에 관한 연구 (An Analysis of the Applicable Fields of UDC)

  • 이창수
    • 한국도서관정보학회지
    • /
    • 제35권4호
    • /
    • pp.1-21
    • /
    • 2004
  • 이 연구는 UDC의 최근동향을 보다 체계적으로 이해하는데 도움이 되고자 UDC의 역사적 배경과 그 분류표의 유지관리 및 개정, 그리고 UDC가 최근에 어떻게 적용되고 있는지에 대하여 살펴보았다. UDC는 1905년이래 발전을 거듭하여, 현재 UDCC가 관리를 하며 전자적으로 이용가능 한 MRF를 매년 갱신함으로 써 최신성을 유지하고 있다. UDC는 기호의 생략정도에 따라 표준판, 확장판, 간략판으로 출판하고 있으며, 온라인 상에서도 UDC를 이용할 수 있다. UDC는 현재 서가배열, SDI 서비스, 서지의 주제별탐색, 교환언어로서 또는 인터넷상에서의 주제 게이트웨이와 메타데이터, 자동분류 등에 적용되고 있다.

  • PDF

회전기계 고장 진단에 적용한 인공 신경회로망과 통계적 패턴 인식 기법의 비교 연구 (A Comparison of Artificial Neural Networks and Statistical Pattern Recognition Methods for Rotation Machine Condition Classification)

  • 김창구;박광호;기창두
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.119-125
    • /
    • 1999
  • This paper gives an overview of the various approaches to designing statistical pattern recognition scheme based on Bayes discrimination rule and the artificial neural networks for rotating machine condition classification. Concerning to Bayes discrimination rule, this paper contains the linear discrimination rule applied to classification into several multivariate normal distributions with common covariance matrices, the quadratic discrimination rule under different covariance matrices. Also we discribes k-nearest neighbor method to directly estimate a posterior probability of each class. Five features are extracted in time domain vibration signals. Employing these five features, statistical pattern classifier and neural networks have been established to detect defects on rotating machine. Four different cases of rotation machine were observed. The effects of k number and neural networks structures on monitoring performance have also been investigated. For the comparison of diagnosis performance of these two method, their recognition success rates are calculated form the test data. The result of experiment which classifies the rotating machine conditions using each method presents that the neural networks shows the highest recognition rate.

  • PDF

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.