• 제목/요약/키워드: Classification algorithms

검색결과 1,195건 처리시간 0.023초

A Comparison Study of Classification Algorithms in Data Mining

  • Lee, Seung-Joo;Jun, Sung-Rae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Generally the analytical tools of data mining have two learning types which are supervised and unsupervised learning algorithms. Classification and prediction are main analysis tools for supervised learning. In this paper, we perform a comparison study of classification algorithms in data mining. We make comparative studies between popular classification algorithms which are LDA, QDA, kernel method, K-nearest neighbor, naive Bayesian, SVM, and CART. Also, we use almost all classification data sets of UCI machine learning repository for our experiments. According to our results, we are able to select proper algorithms for given classification data sets.

Stream-based Biomedical Classification Algorithms for Analyzing Biosignals

  • Fong, Simon;Hang, Yang;Mohammed, Sabah;Fiaidhi, Jinan
    • Journal of Information Processing Systems
    • /
    • 제7권4호
    • /
    • pp.717-732
    • /
    • 2011
  • Classification in biomedical applications is an important task that predicts or classifies an outcome based on a given set of input variables such as diagnostic tests or the symptoms of a patient. Traditionally the classification algorithms would have to digest a stationary set of historical data in order to train up a decision-tree model and the learned model could then be used for testing new samples. However, a new breed of classification called stream-based classification can handle continuous data streams, which are ever evolving, unbound, and unstructured, for instance--biosignal live feeds. These emerging algorithms can potentially be used for real-time classification over biosignal data streams like EEG and ECG, etc. This paper presents a pioneer effort that studies the feasibility of classification algorithms for analyzing biosignals in the forms of infinite data streams. First, a performance comparison is made between traditional and stream-based classification. The results show that accuracy declines intermittently for traditional classification due to the requirement of model re-learning as new data arrives. Second, we show by a simulation that biosignal data streams can be processed with a satisfactory level of performance in terms of accuracy, memory requirement, and speed, by using a collection of stream-mining algorithms called Optimized Very Fast Decision Trees. The algorithms can effectively serve as a corner-stone technology for real-time classification in future biomedical applications.

Hybrid Case-based Reasoning and Genetic Algorithms Approach for Customer Classification

  • Kim Kyoung-jae;Ahn Hyunchul
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.209-212
    • /
    • 2005
  • This study proposes hybrid case-based reasoning and genetic algorithms model for customer classification. In this study, vertical and horizontal dimensions of the research data are reduced through integrated feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed model may improve the classification accuracy and outperform various optimization models of typical CBR system.

계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류 (Hierarchical CNN-Based Senary Classification of Steganographic Algorithms)

  • 강상훈;박한훈
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.

Contribution to Improve Database Classification Algorithms for Multi-Database Mining

  • Miloudi, Salim;Rahal, Sid Ahmed;Khiat, Salim
    • Journal of Information Processing Systems
    • /
    • 제14권3호
    • /
    • pp.709-726
    • /
    • 2018
  • Database classification is an important preprocessing step for the multi-database mining (MDM). In fact, when a multi-branch company needs to explore its distributed data for decision making, it is imperative to classify these multiple databases into similar clusters before analyzing the data. To search for the best classification of a set of n databases, existing algorithms generate from 1 to ($n^2-n$)/2 candidate classifications. Although each candidate classification is included in the next one (i.e., clusters in the current classification are subsets of clusters in the next classification), existing algorithms generate each classification independently, that is, without taking into account the use of clusters from the previous classification. Consequently, existing algorithms are time consuming, especially when the number of candidate classifications increases. To overcome the latter problem, we propose in this paper an efficient approach that represents the problem of classifying the multiple databases as a problem of identifying the connected components of an undirected weighted graph. Theoretical analysis and experiments on public databases confirm the efficiency of our algorithm against existing works and that it overcomes the problem of increase in the execution time.

바이올린과 첼로 연주 데이터를 이용한 분류 알고리즘의 성능 비교 (Performance Comparison of Classification Algorithms in Music Recognition using Violin and Cello Sound Files)

  • 김재천;곽경섭
    • 한국통신학회논문지
    • /
    • 제30권5C호
    • /
    • pp.305-312
    • /
    • 2005
  • 음악인식에 주로 사용되는 세 가지 알고리즘의 성능을 비교하였다. 다양한 분류알고리즘을 소개하고 그 중 베이지안법, 최근접이웃법과 k-최근접이웃법을 이용하여 악기를 분류하였다. 악기 샘플파일에서 영교차율, 평균, 분산, 평균피크레벨의 4가지 특성값을 추출하여 분류시스템의 데이터로 사용하였다. 사용된 악기 샘플은 바이올린, 바로크 바이올린, 바로크 첼로이다. 실험결과 최근접이웃 알고리즘이 악기 분류에 있어서 가장 좋은 성능을 보여 주었다. 최근접이웃 알고리즘은 단순하면서도 빠른 계산결과를 보여 악기 분류에 적절한 알고리즘으로 판단되었다.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

수동소나를 이용한 수중물체 자동판별기법 연구 (A Study on the Algorithm for Underwater Target Automatic Classification using the Passive Sonar)

  • 이성은;최수복;노도영
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.76-84
    • /
    • 2000
  • As first step of any acoustic defence system, a attacking target warning system needs to be extremely reliable. This means the system must ensure a high probability of target classification together with a very low false alarm rate. In this paper, a algorithms for underwater target automatic classification is available for use in the passive sonar will be presented. In first, we will describe the precise automatic extraction of frequency lines for the detection of acoustic signatures. Also, a neural network and fuzzy based algorithms for target classification will be described. Thus the performances of these algorithms are very good with a high probability of classification.

  • PDF

Accuracy of Phishing Websites Detection Algorithms by Using Three Ranking Techniques

  • Mohammed, Badiea Abdulkarem;Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.272-282
    • /
    • 2022
  • Between 2014 and 2019, the US lost more than 2.1 billion USD to phishing attacks, according to the FBI's Internet Crime Complaint Center, and COVID-19 scam complaints totaled more than 1,200. Phishing attacks reflect these awful effects. Phishing websites (PWs) detection appear in the literature. Previous methods included maintaining a centralized blacklist that is manually updated, but newly created pseudonyms cannot be detected. Several recent studies utilized supervised machine learning (SML) algorithms and schemes to manipulate the PWs detection problem. URL extraction-based algorithms and schemes. These studies demonstrate that some classification algorithms are more effective on different data sets. However, for the phishing site detection problem, no widely known classifier has been developed. This study is aimed at identifying the features and schemes of SML that work best in the face of PWs across all publicly available phishing data sets. The Scikit Learn library has eight widely used classification algorithms configured for assessment on the public phishing datasets. Eight was tested. Later, classification algorithms were used to measure accuracy on three different datasets for statistically significant differences, along with the Welch t-test. Assemblies and neural networks outclass classical algorithms in this study. On three publicly accessible phishing datasets, eight traditional SML algorithms were evaluated, and the results were calculated in terms of classification accuracy and classifier ranking as shown in tables 4 and 8. Eventually, on severely unbalanced datasets, classifiers that obtained higher than 99.0 percent classification accuracy. Finally, the results show that this could also be adapted and outperforms conventional techniques with good precision.

사망사고와 부상사고의 산업재해분류를 위한 기계학습 접근법 (Machine Learning Approach to Classifying Fatal and Non-Fatal Accidents in Industries)

  • 강성식;장성록;서용윤
    • 한국안전학회지
    • /
    • 제36권5호
    • /
    • pp.52-60
    • /
    • 2021
  • As the prevention of fatal accidents is considered an essential part of social responsibilities, both government and individual have devoted efforts to mitigate the unsafe conditions and behaviors that facilitate accidents. Several studies have analyzed the factors that cause fatal accidents and compared them to those of non-fatal accidents. However, studies on mathematical and systematic analysis techniques for identifying the features of fatal accidents are rare. Recently, various industrial fields have employed machine learning algorithms. This study aimed to apply machine learning algorithms for the classification of fatal and non-fatal accidents based on the features of each accident. These features were obtained by text mining literature on accidents. The classification was performed using four machine learning algorithms, which are widely used in industrial fields, including logistic regression, decision tree, neural network, and support vector machine algorithms. The results revealed that the machine learning algorithms exhibited a high accuracy for the classification of accidents into the two categories. In addition, the importance of comparing similar cases between fatal and non-fatal accidents was discussed. This study presented a method for classifying accidents using machine learning algorithms based on the reports on previous studies on accidents.