• 제목/요약/키워드: Classification Tree Method

검색결과 360건 처리시간 0.026초

A Novel Feature Selection Method in the Categorization of Imbalanced Textual Data

  • Pouramini, Jafar;Minaei-Bidgoli, Behrouze;Esmaeili, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3725-3748
    • /
    • 2018
  • Text data distribution is often imbalanced. Imbalanced data is one of the challenges in text classification, as it leads to the loss of performance of classifiers. Many studies have been conducted so far in this regard. The proposed solutions are divided into several general categories, include sampling-based and algorithm-based methods. In recent studies, feature selection has also been considered as one of the solutions for the imbalance problem. In this paper, a novel one-sided feature selection known as probabilistic feature selection (PFS) was presented for imbalanced text classification. The PFS is a probabilistic method that is calculated using feature distribution. Compared to the similar methods, the PFS has more parameters. In order to evaluate the performance of the proposed method, the feature selection methods including Gini, MI, FAST and DFS were implemented. To assess the proposed method, the decision tree classifications such as C4.5 and Naive Bayes were used. The results of tests on Reuters-21875 and WebKB figures per F-measure suggested that the proposed feature selection has significantly improved the performance of the classifiers.

FDC-TCT를 이용한 웹 문서 클러스터링 성능 개선 기법 (A performance improvement methodology of web document clustering using FDC-TCT)

  • 고석범;윤성대
    • 정보처리학회논문지D
    • /
    • 제12D권4호
    • /
    • pp.637-646
    • /
    • 2005
  • 키워드를 통한 웹 검색 결과의 분류와 같은 후처리가 요구되는 문서 분류 문제에서, 기존의 문서 분류 또는 클러스터링 알고리즘을 적용하는 데에는 많은 문제가 있다 그 중에서 고려해야 할 가장 심각한 두 가지 문제가 있다. 첫째는 전문가가 관여하여 범주를 선정하는 문제이고, 둘째는 문서분류에 소요되는 수행시간이 긴 문제이다. 따라서 본 논문에서는 이행적 폐쇄 트리를 이용하여 문서 유사도 계산 횟수를 크게 줄이고, 정확도의 희생을 최소화하면서 신속한 처리가 가능한 새로운 웹 문서 클러스터링 기법을 제안하다. 또한, 제안된 기법의 효율성을 검증하기 위하여 기존의 알고리즘과 비교 평가 및 분석한다.

도시 구조물 분류를 위한 3차원 점 군의 구형 특징 표현과 심층 신뢰 신경망 기반의 환경 형상 학습 (Spherical Signature Description of 3D Point Cloud and Environmental Feature Learning based on Deep Belief Nets for Urban Structure Classification)

  • 이세진;김동현
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.115-126
    • /
    • 2016
  • This paper suggests the method of the spherical signature description of 3D point clouds taken from the laser range scanner on the ground vehicle. Based on the spherical signature description of each point, the extractor of significant environmental features is learned by the Deep Belief Nets for the urban structure classification. Arbitrary point among the 3D point cloud can represents its signature in its sky surface by using several neighborhood points. The unit spherical surface centered on that point can be considered to accumulate the evidence of each angular tessellation. According to a kind of point area such as wall, ground, tree, car, and so on, the results of spherical signature description look so different each other. These data can be applied into the Deep Belief Nets, which is one of the Deep Neural Networks, for learning the environmental feature extractor. With this learned feature extractor, 3D points can be classified due to its urban structures well. Experimental results prove that the proposed method based on the spherical signature description and the Deep Belief Nets is suitable for the mobile robots in terms of the classification accuracy.

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

코퍼스 방식 음성합성에서의 개선된 운율구 경계 예측 (AP, IP Prediction For Corpus-based Korean Text-To-Speech)

  • 권오일;홍문기;강선미;신지영
    • 음성과학
    • /
    • 제9권3호
    • /
    • pp.25-34
    • /
    • 2002
  • One of the most important factor in the performance of Korean text-to-speech system is the prediction of accentual and intonational phrase boundary. The previous method of prediction shows only the 75-85% which is not proper in the practical and commercial system. Therefore, more accurate prediction must be needed in the practical system. In this study, we propose the simple and more accurate method of the prediction of AP, IP.

  • PDF

One Channel Five-Way Classification Algorithm For Automatically Classifying Speech

  • Lee, Kyo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권3E호
    • /
    • pp.12-21
    • /
    • 1998
  • In this paper, we describe the one channel five-way, V/U/M/N/S (Voice/Unvoice/Nasal/Silent), classification algorithm for automatically classifying speech. The decision making process is viewed as a pattern viewed as a pattern recognition problem. Two aspects of the algorithm are developed: feature selection and classifier type. The feature selection procedure is studied for identifying a set of features to make V/U/M/N/S classification. The classifiers used are a vector quantization (VQ), a neural network(NN), and a decision tree method. Actual five sentences spoken by six speakers, three male and three female, are tested with proposed classifiers. From a set of measurement tests, the proposed classifiers show fairly good accuracy for V/U/M/N/S decision.

  • PDF

Review of Korean Speech Act Classification: Machine Learning Methods

  • Kim, Hark-Soo;Seon, Choong-Nyoung;Seo, Jung-Yun
    • Journal of Computing Science and Engineering
    • /
    • 제5권4호
    • /
    • pp.288-293
    • /
    • 2011
  • To resolve ambiguities in speech act classification, various machine learning models have been proposed over the past 10 years. In this paper, we review these machine learning models and present the results of experimental comparison of three representative models, namely the decision tree, the support vector machine (SVM), and the maximum entropy model (MEM). In experiments with a goal-oriented dialogue corpus in the schedule management domain, we found that the MEM has lighter hardware requirements, whereas the SVM has better performance characteristics.

범주형 시퀀스 데이터의 K-Nearest Neighbor알고리즘 (A K-Nearest Neighbor Algorithm for Categorical Sequence Data)

  • 오승준
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.215-221
    • /
    • 2005
  • 최근에는 단백질 시퀀스, 소매점 거래 데이터, 웹 로그 등과 같은 상업적이거나 과학적인 데이터의 폭발적인 증가를 볼 수 있다. 이런 데이터들은 순서적인 면을 가지고 있는 시퀀스 데이터들이다. 본 논문에서는 이런 시퀀스 데이터들을 분류하는 문제를 다룬다. 분류 기법 으로는 의사결정 나무나 베이지안 분류기, K-NN방법 등 석러 종류가 있는데, 본 연구에서는 또-U방법을 이용하여 시퀀스들을 분류한다. 또한, 시퀀스들간의 유사도를 구하기 위한 새로운 계산 방법과 효율적인 계산 방법도 제안한다.

  • PDF

Classification 및 Ordination 방법에 의한 융문산 삼림의 식물군집 구조분석 (Analysis on the Structure of Plant Community in Mt. Yongmun by Classification and Ordination Techniques)

  • 이경재
    • Journal of Plant Biology
    • /
    • 제33권3호
    • /
    • pp.173-182
    • /
    • 1990
  • To investigate the structure of the plant community structure of Mt. Yongmun in Kyonggi-do, fifty-four plots were set up by the clumped sampling method. The classification by TWINSPAN and DCA ordination were applied to the study area in order to classify them into several groups based on woody plant and environmental variables. By both techniques, the plant community were divided into two groups by the aspect. the dominant species of south aspect were Pinus densiflora, Quercus aliena, Q. mongolica, Carpinus laxiflora and of north aspect were Q. ongolica, Fraxinus rhynchophylla. The successional trends of tree species in south aspect seem to be from P. densiflora through Q. serrata, Q. aliena, A. mongolica to C. laxiflora. As a result of the analysis for the relationship between the stand scores of DCA and environmental variables, they had a tendency to increase significantly from the P. densiflora and Q. mongolica community to C. laxiflora and F. rhynchophylla community that was the soil moisture, the amount of soil humus and soil pH.

  • PDF

비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법 (Video retrieval method using non-parametric based motion classification)

  • 김낙우;최종수
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.1-11
    • /
    • 2006
  • 본 논문에서는 샷(shot) 기반 비디오 색인 구조에서 비-파라미터(non-parametric) 기반의 움직임 분류를 통한 비디오 영상 검색 기법을 제안한다. 본 논문에서 제안하는 비디오 검색 시스템은 장면 전환 기법을 통해 얻은 샷 단위의 짧은 비디오로부터 대표 프레임과 움직임 정보를 취득한 후, 이를 통해 시각적 특징과 움직임 특징을 추출하여 유사도를 비교함으로써 시-공간적 특징을 이용한 실시간 검색이 가능하도록 구현되었다. 비-파라미터 기반의 움직임 특징의 추출은 MPEG 압축 스트림으로부터 정규화된 움직임 벡터계(界)를 추출한 후, 각각의 정규화된 움직임 벡터를 여러 개의 각도 빈(bin)으로 양자화하고 이의 평균과 분산, 방향 등을 고려함으로써 효과적으로 이루어진다. 대표 프레임에서의 시각 특징 검출을 위해서는 에지 기반의 공간 기술자를 이용하였다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 시스템이 매우 효과적임을 잘 나타내고 있다. 데이터베이스 내 영상의 색인을 위해서는 R*-tree 구조를 이용한다.