• Title/Summary/Keyword: Classification Tree

Search Result 936, Processing Time 0.022 seconds

A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis

  • Tang, Tzung-I;Zheng, Gang;Huang, Yalou;Shu, Guangfu;Wang, Pengtao
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.102-108
    • /
    • 2005
  • This paper studies medical data classification methods, comparing decision tree and system reconstruction analysis as applied to heart disease medical data mining. The data we study is collected from patients with coronary heart disease. It has 1,723 records of 71 attributes each. We use the system-reconstruction method to weight it. We use decision tree algorithms, such as induction of decision trees (ID3), classification and regression tree (C4.5), classification and regression tree (CART), Chi-square automatic interaction detector (CHAID), and exhausted CHAID. We use the results to compare the correction rate, leaf number, and tree depth of different decision-tree algorithms. According to the experiments, we know that weighted data can improve the correction rate of coronary heart disease data but has little effect on the tree depth and leaf number.

Classification of tree species using high-resolution QuickBird-2 satellite images in the valley of Ui-dong in Bukhansan National Park

  • Choi, Hye-Mi;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • This study was performed in order to suggest the possibility of tree species classification using high-resolution QuickBird-2 images spectral characteristics comparison(digital numbers [DNs]) of tree species, tree species classification, and accuracy verification. In October 2010, the tree species of three conifers and eight broad-leaved trees were examined in the areas studied. The spectral characteristics of each species were observed, and the study area was classified by image classification. The results were as follows: Panchromatic and multi-spectral band 4 was found to be useful for tree species classification. DNs values of conifers were lower than broad-leaved trees. Vegetation indices such as normalized difference vegetation index (NDVI), soil brightness index (SBI), green vegetation index (GVI) and Biband showed similar patterns to band 4 and panchromatic (PAN); Tukey's multiple comparison test was significant among tree species. However, tree species within the same genus, such as $Pinus$ $densiflora-P.$ $rigida$ and $Quercus$ $mongolica-Q.$ $serrata$, showed similar DNs patterns and, therefore, supervised classification results were difficult to distinguish within the same genus; Random selection of validation pixels showed an overall classification accuracy of 74.1% and Kappa coefficient was 70.6%. The classification accuracy of $Pterocarya$ $stenoptera$, 89.5%, was found to be the highest. The classification accuracy of broad-leaved trees was lower than expected, ranging from 47.9% to 88.9%. $P.$ $densiflora-P.$ $rigida$ and $Q.$ $mongolica-Q.$ $serrata$ were classified as the same species because they did not show significant differences in terms of spectral patterns.

Classification Accuracy Improvement for Decision Tree (의사결정트리의 분류 정확도 향상)

  • Rezene, Mehari Marta;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

Comparison of Variable Importance Measures in Tree-based Classification (나무구조의 분류분석에서 변수 중요도에 대한 고찰)

  • Kim, Na-Young;Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.717-729
    • /
    • 2014
  • Projection pursuit classification tree uses a 1-dimensional projection with the view of the most separating classes in each node. These projection coefficients contain information distinguishing two groups of classes from each other and can be used to calculate the importance measure of classification in each variable. This paper reviews the variable importance measure with increasing interest in line with growing data size. We compared the performances of projection pursuit classification tree with those of classification and regression tree(CART) and random forest. Projection pursuit classification tree are found to produce better performance in most cases, particularly with highly correlated variables. The importance measure of projection pursuit classification tree performs slightly better than the importance measure of random forest.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Hybridized Decision Tree methods for Detecting Generic Attack on Ciphertext

  • Alsariera, Yazan Ahmad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.56-62
    • /
    • 2021
  • The surge in generic attacks execution against cipher text on the computer network has led to the continuous advancement of the mechanisms to protect information integrity and confidentiality. The implementation of explicit decision tree machine learning algorithm is reported to accurately classifier generic attacks better than some multi-classification algorithms as the multi-classification method suffers from detection oversight. However, there is a need to improve the accuracy and reduce the false alarm rate. Therefore, this study aims to improve generic attack classification by implementing two hybridized decision tree algorithms namely Naïve Bayes Decision tree (NBTree) and Logistic Model tree (LMT). The proposed hybridized methods were developed using the 10-fold cross-validation technique to avoid overfitting. The generic attack detector produced a 99.8% accuracy, an FPR score of 0.002 and an MCC score of 0.995. The performances of the proposed methods were better than the existing decision tree method. Similarly, the proposed method outperformed multi-classification methods for detecting generic attacks. Hence, it is recommended to implement hybridized decision tree method for detecting generic attacks on a computer network.

Tree size determination for classification ensemble

  • Choi, Sung Hoon;Kim, Hyunjoong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.255-264
    • /
    • 2016
  • Classification is a predictive modeling for a categorical target variable. Various classification ensemble methods, which predict with better accuracy by combining multiple classifiers, became a powerful machine learning and data mining paradigm. Well-known methodologies of classification ensemble are boosting, bagging and random forest. In this article, we assume that decision trees are used as classifiers in the ensemble. Further, we hypothesized that tree size affects classification accuracy. To study how the tree size in uences accuracy, we performed experiments using twenty-eight data sets. Then we compare the performances of ensemble algorithms; bagging, double-bagging, boosting and random forest, with different tree sizes in the experiment.

Note on classification and regression tree analysis (분류와 회귀나무분석에 관한 소고)

  • 임용빈;오만숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.1
    • /
    • pp.152-161
    • /
    • 2002
  • The analysis of large data sets with hundreds of thousands observations and thousands of independent variables is a formidable computational task. A less parametric method, capable of identifying important independent variables and their interactions, is a tree structured approach to regression and classification. It gives a graphical and often illuminating way of looking at data in classification and regression problems. In this paper, we have reviewed and summarized tile methodology used to construct a tree, multiple trees and the sequential strategy for identifying active compounds in large chemical databases.

Two-Stage Decision Tree Analysis for Diagnosis of Personal Sasang Constitution Medicine Type (사상체질 판별을 위한 2단계 의사결정 나무 분석)

  • Jin, Hee-Jeong;Lee, Hae-Jung;Kim, Myoung-Geun;Kim, Hong-Gie;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.3
    • /
    • pp.87-97
    • /
    • 2010
  • 1. Objectives: In SCM, a personal Sasang constitution must be determined accurately before any Sasang treatment. The purpose of this study is to develop an objective method for classification of Sasang constitution. 2. Methods: We collected samples from 5 centers where SCM is practiced, and applied two-stage decision tree analysis on these samples. We recruited samples from 5 centers. The collected data were from subjects whose response to herbal medicine was confirmed according to Sasang constitution. 3. Results: The two-stage decision tree model shows higher classification power than a simple decision tree model. This study also suggests that gender must be considered in the first stage to improve the accuracy of classification. 4. Conclusions: We identified important factors for classifying Sasang constitutions through two-stage decision tree analysis. The two-stage decision tree model shows higher classification power than a simple decision tree model.

Comparison of Performance Measures for Credit-Card Delinquents Classification Models : Measured by Hit Ratio vs. by Utility (신용카드 연체자 분류모형의 성능평가 척도 비교 : 예측률과 유틸리티 중심으로)

  • Chung, Suk-Hoon;Suh, Yong-Moo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.4
    • /
    • pp.21-36
    • /
    • 2008
  • As the great disturbance from abusing credit cards in Korea becomes stabilized, credit card companies need to interpret credit-card delinquents classification models from the viewpoint of profit. However, hit ratio which has been used as a measure of goodness of classification models just tells us how much correctly they classified rather than how much profits can be obtained as a result of using classification models. In this research, we tried to develop a new utility-based measure from the viewpoint of profit and then used this new measure to analyze two classification models(Neural Networks and Decision Tree models). We found that the hit ratio of neural model is higher than that of decision tree model, but the utility value of decision tree model is higher than that of neural model. This experiment shows the importance of utility based measure for credit-card delinquents classification models. We expect this new measure will contribute to increasing profits of credit card companies.

  • PDF