• Title/Summary/Keyword: Classification Problem Solving

Search Result 133, Processing Time 0.02 seconds

Estimation of pattern classification vigilance parameter using neural network

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.95-97
    • /
    • 2004
  • This paper estimates Adaptive Resonance Theory 1(ART1) as a vigilance parameter of pattern clustering algorithm. Inherent characteristics of the model are analyzed. In particular the vigilance parameter ${\rho}$ and its role in classification of patterns is examined. Our estimates show that the vigilance parameter as designed originally does not necessarily increase the number of categories with its value but can decrease also. This is against the claim of solving the stability-plasticity dilemma. However, we have proposed a modified vigilance parameter estimate criterion which takes into account the problem of subset and superset patterns and stably categorizes arbitrarily many input patterns in one list presentation when the vigilance parameter is closer to one.

  • PDF

Multiclass Classification via Least Squares Support Vector Machine Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.441-450
    • /
    • 2008
  • In this paper we propose a new method for solving multiclass problem with least squares support vector machine(LS-SVM) regression. This method implements one-against-all scheme which is as accurate as any other approach. We also propose cross validation(CV) method to select effectively the optimal values of hyper-parameters which affect the performance of the proposed multiclass method. Experimental results are then presented which indicate the performance of the proposed multiclass method.

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

Research on Shellfish Recognition Based on Improved Faster RCNN

  • Feng, Yiran;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.695-700
    • /
    • 2021
  • The Faster RCNN-based shellfish recognition algorithm is introduced for shellfish recognition studies that currently do not have any deep learning-based algorithms in a practical setting. The original feature extraction module is replaced by DenseNet, which fuses multi-level feature data and optimises the NMS algorithm, network depth and merging method; overcoming the omission of shellfish overlap, multiple shellfish and insufficient light, effectively solving the problem of low shellfish classification accuracy. In the complexifier test environment, the test accuracy was improved by nearly 4%. Higher testing accuracy was achieved compared to the original testing algorithm. This provides favourable technical support for future applications of the improved Faster RCNN approach to seafood quality classification.

Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations (유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구)

  • Lee, Ki-Kwang;Han, Chang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • Medical diagnosis can be considered a classification task which classifies disease types from patient's condition data represented by a set of pre-defined attributes. This study proposes a hybrid genetic algorithm based classification method to develop classifiers for multidimensional pattern classification problems related with medical decision making. The classification problem can be solved by identifying separation boundaries which distinguish the various classes in the data pattern. The proposed method fits a finite number of regional agents to the data pattern by combining genetic algorithms and local adaptive operations. The local adaptive operations of an agent include expansion, avoidance and relocation, one of which is performed according to the agent's fitness value. The classifier system has been tested with well-known medical data sets from the UCI machine learning database, showing superior performance to other methods such as the nearest neighbor, decision tree, and neural networks.

  • PDF

Aggregating Prediction Outputs of Multiple Classification Techniques Using Mixed Integer Programming (다수의 분류 기법의 예측 결과를 결합하기 위한 혼합 정수 계획법의 사용)

  • Jo, Hongkyu;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.71-89
    • /
    • 2003
  • Although many studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective in the classification problems. Alternatively, it has been suggested that a better approach to classification problem might be to integrate several different forecasting techniques. This study proposes the linearly combining methodology of different classification techniques. The methodology is developed to find the optimal combining weight and compute the weighted-average of different techniques' outputs. The proposed methodology is represented as the form of mixed integer programming. The objective function of proposed combining methodology is to minimize total misclassification cost which is the weighted-sum of two types of misclassification. To simplify the problem solving process, cutoff value is fixed and threshold function is removed. The form of mixed integer programming is solved with the branch and bound methods. The result showed that proposed methodology classified more accurately than any of techniques individually did. It is confirmed that Proposed methodology Predicts significantly better than individual techniques and the other combining methods.

  • PDF

An Evolutionary Computing Approach to Building Intelligent Frauds Detection System

  • Kim, Jung-Won;Peter Bentley;Chol, Jong-Uk;Kim, Hwa-Soo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.97-108
    • /
    • 2001
  • Frauds detection is a difficult problem, requiring huge computer resources and complicated search activities Researchers have struggled with the problem. Even though a fee research approaches have claimed that their solution is much better than others, research community has not found 'the best solution'well fitting every fraud. Because of the evolving nature of the frauds. a novel and self-adapting method should be devised. In this research a new approach is suggested to solving frauds in insurance claims credit card transaction. Based on evolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new self of decision-makin rules. We believe that this new approach will provide a promising alternative to conventional ones, in terms of computation performance and classification accuracy.

  • PDF

Semisupervised Learning Using the AdaBoost Algorithm with SVM-KNN (SVM-KNN-AdaBoost를 적용한 새로운 중간교사학습 방법)

  • Lee, Sang-Min;Yeon, Jun-Sang;Kim, Ji-Soo;Kim, Sung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1336-1339
    • /
    • 2012
  • In this paper, we focus on solving the classification problem by using semisupervised learning strategy. Traditional classifiers are constructed based on labeled data in supervised learning. Labeled data, however, are often difficult, expensive or time consuming to obtain, as they require the efforts of experienced human annotators. Unlabeled data are significantly easier to obtain without human efforts. Thus, we use AdaBoost algorithm with SVM-KNN classifier to apply semisupervised learning problem and improve the classifier performance. Experimental results on both artificial and UCI data sets show that the proposed methodology can reduce the error rate.

An Evolutionary Computing Approach to Building Intelligent Frauds Detection Systems

  • Kim, Jung-Won;Peter Bentley;Park, Jong-Uk
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.293-304
    • /
    • 2001
  • frauds detection is a difficult problem, requiring huge computer resources and complicated search activities. researchers have struggled with the problem. Even though a flew research approaches have claimed that their solution is much bettor than others, research community has not found 'the best solution'well fitting every fraud. Because of the evolving nature of the frauds, a Revel and self-adapting method should be devised. In this research a new approach is suggested to solving frauds in insurance claims and credit card transaction. Based on evolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new set of decision-making rules. We believe that this new approach will provide a promising alternative to conventional ones, in terms of computation performance and classification accuracy.

  • PDF

Interaction-based Collaborative Recommendation: A Personalized Learning Environment (PLE) Perspective

  • Ali, Syed Mubarak;Ghani, Imran;Latiff, Muhammad Shafie Abd
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.446-465
    • /
    • 2015
  • In this modern era of technology and information, e-learning approach has become an integral part of teaching and learning using modern technologies. There are different variations or classification of e-learning approaches. One of notable approaches is Personal Learning Environment (PLE). In a PLE system, the contents are presented to the user in a personalized manner (according to the user's needs and wants). The problem arises when a new user enters the system, and due to the lack of information about the new user's needs and wants, the system fails to recommend him/her the personalized e-learning contents accurately. This phenomenon is known as cold-start problem. In order to address this issue, existing researches propose different approaches for recommendation such as preference profile, user ratings and tagging recommendations. In this research paper, the implementation of a novel interaction-based approach is presented. The interaction-based approach improves the recommendation accuracy for the new-user cold-start problem by integrating preferences profile and tagging recommendation and utilizing the interaction among users and system. This research work takes leverage of the interaction of a new user with the PLE system and generates recommendation for the new user, both implicitly and explicitly, thus solving new-user cold-start problem. The result shows the improvement of 31.57% in Precision, 18.29% in Recall and 8.8% in F1-measure.