• Title/Summary/Keyword: Classification Performance

Search Result 3,735, Processing Time 0.027 seconds

Short Text Classification for Job Placement Chatbot by T-EBOW (T-EBOW를 이용한 취업알선 챗봇용 단문 분류 연구)

  • Kim, Jeongrae;Kim, Han-joon;Jeong, Kyoung Hee
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • Recently, in various business fields, companies are concentrating on providing chatbot services to various environments by adding artificial intelligence to existing messenger platforms. Organizations in the field of job placement also require chatbot services to improve the quality of employment counseling services and to solve the problem of agent management. A text-based general chatbot classifies input user sentences into learned sentences and provides appropriate answers to users. Recently, user sentences inputted to chatbots are inputted as short texts due to the activation of social network services. Therefore, performance improvement of short text classification can contribute to improvement of chatbot service performance. In this paper, we propose T-EBOW (Translation-Extended Bag Of Words), which is a method to add translation information as well as concept information of existing researches in order to strengthen the short text classification for employment chatbot. The performance evaluation results of the T-EBOW applied to the machine learning classification model are superior to those of the conventional method.

A Comparative Study of Classification Methods Using Data with Label Noise (레이블 노이즈가 존재하는 자료의 판별분석 방법 비교연구)

  • Kwon, So Young;Kim, Kyoung Hee
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2853-2864
    • /
    • 2018
  • Discriminant analysis predicts a class label of a new observation with an unknown label, using information from the existing labeled data. Hence, observed labels play a critical role in the analysis and we usually assume that these labels are correct. If the observed label contains an error, the data has label noise. Label noise can frequently occur in real data, which would affect classification performance. In order to resolve this, a comparative study was carried out using simulated data with label noise. In particular, we considered 4 different classification techniques such as LDA (linear discriminant analysis classifiers), QDA (quadratic discriminant analysis classifiers), KNN (k-nearest neighbour), and SVM (support vector machine). Then we evaluated each method via average accuracy using generated data from various scenarios. The effect of label noise was investigated through its occurrence rate and type (noise location). We confirmed that the label noise is a significant factor influencing the classification performance.

Search for Optimal Data Augmentation Policy for Environmental Sound Classification with Deep Neural Networks (심층 신경망을 통한 자연 소리 분류를 위한 최적의 데이터 증대 방법 탐색)

  • Park, Jinbae;Kumar, Teerath;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.854-860
    • /
    • 2020
  • Deep neural networks have shown remarkable performance in various areas, including image classification and speech recognition. The variety of data generated by augmentation plays an important role in improving the performance of the neural network. The transformation of data in the augmentation process makes it possible for neural networks to be learned more generally through more diverse forms. In the traditional field of image process, not only new augmentation methods have been proposed for improving the performance, but also exploring methods for an optimal augmentation policy that can be changed according to the dataset and structure of networks. Inspired by the prior work, this paper aims to explore to search for an optimal augmentation policy in the field of sound data. We carried out many experiments randomly combining various augmentation methods such as adding noise, pitch shift, or time stretch to empirically search which combination is most effective. As a result, by applying the optimal data augmentation policy we achieve the improved classification accuracy on the environmental sound classification dataset (ESC-50).

A Text Content Classification Using LSTM For Objective Category Classification

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.39-46
    • /
    • 2021
  • AI is deeply applied to various algorithms that assists us, not only daily technologies like translator and Face ID, but also contributing to innumerable fields in industry, due to its dominance. In this research, we provide convenience through AI categorization, extracting the only data that users need, with objective classification, rather than verifying all data to find from the internet, where exists an immense number of contents. In this research, we propose a model using LSTM(Long-Short Term Memory Network), which stands out from text classification, and compare its performance with models of RNN(Recurrent Neural Network) and BiLSTM(Bidirectional LSTM), which is suitable structure for natural language processing. The performance of the three models is compared using measurements of accuracy, precision, and recall. As a result, the LSTM model appears to have the best performance. Therefore, in this research, text classification using LSTM is recommended.

Fatigue Classification Model Based On Machine Learning Using Speech Signals (음성신호를 이용한 기계학습 기반 피로도 분류 모델)

  • Lee, Soo Hwa;Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.741-747
    • /
    • 2022
  • Fatigue lowers an individual's ability and makes it difficult to perform work. As fatigue accumulates, concentration decreases and thus the possibility of causing a safety accident increases. Awareness of fatigue is subjective, but it is necessary to quantitatively measure the level of fatigue in the actual field. In previous studies, it was proposed to measure the level of fatigue by expert judgment by adding objective indicators such as bio-signal analysis to subjective evaluations such as multidisciplinary fatigue scales. However this method is difficult to evaluate fatigue in real time in daily life. This paper is a study on the fatigue classification model that determines the fatigue level of workers in real time using speech data recorded in the field. Machine learning models such as logistic classification, support vector machine, and random forest are trained using speech data collected in the field. The performance evaluation showed good performance with accuracy of 0.677 to 0.758, of which logistic classification showed the best performance. From the experimental results, it can be seen that it is possible to classify the fatigue level using speech signals.

Image Classification of Damaged Bolts using Convolution Neural Networks (합성곱 신경망을 이용한 손상된 볼트의 이미지 분류)

  • Lee, Soo-Byoung;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • The CNN (Convolution Neural Network) algorithm which combines a deep learning technique, and a computer vision technology, makes image classification feasible with the high-performance computing system. In this thesis, the CNN algorithm is applied to the classification problem, by using a typical deep learning framework of TensorFlow and machine learning techniques. The data set required for supervised learning is generated with the same type of bolts. some of which have undamaged threads, but others have damaged threads. The learning model with less quantity data showed good classification performance on detecting damage in a bolt image. Additionally, the model performance is reviewed by altering the quantity of convolution layers, or applying selectively the over and under fitting alleviation algorithm.

Optimizing Input Parameters of Paralichthys olivaceus Disease Classification based on SHAP Analysis (SHAP 분석 기반의 넙치 질병 분류 입력 파라미터 최적화)

  • Kyung-Won Cho;Ran Baik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1331-1336
    • /
    • 2023
  • In text-based fish disease classification using machine learning, there is a problem that the input parameters of the machine learning model are too many, but due to performance problems, the input parameters cannot be arbitrarily reduced. This paper proposes a method of optimizing input parameters specialized for Paralichthys olivaceus disease classification using SHAP analysis techniques to solve this problem,. The proposed method includes data preprocessing of disease information extracted from the halibut disease questionnaire by applying the SHAP analysis technique and evaluating a machine learning model using AutoML. Through this, the performance of the input parameters of AutoML is evaluated and the optimal input parameter combination is derived. In this study, the proposed method is expected to be able to maintain the existing performance while reducing the number of input parameters required, which will contribute to enhancing the efficiency and practicality of text-based Paralichthys olivaceus disease classification.

Automatic classification of power quality disturbances using orthogonal polynomial approximation and higher-order spectra (직교 다항식 근사법과 고차 통계를 이용한 전력 외란의 자동식별)

  • 이재상;이철호;남상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1436-1439
    • /
    • 1997
  • The objective of this paper is to present an efficient and practical approach to the automatic classification of power quality(PQ) disturbances, where and orthogonal polynomial approximation method is emloyed for the detection and localization of PQ disturbances, and a feature vector, newly extracted form the bispectra of the detected signal, is utilized for the automatic rectgnition of the various types of PQ disturbances. To demonstrae the performance and applicabiliyt of the proposed approach, some simulation results are provided.

  • PDF

Color image retrieval using block-based classification (블록단위 특성분류를 이용한 컬러 영상의 검색)

  • 류명분;우석훈;박동권;원치선
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.81-89
    • /
    • 1997
  • In this paper, we propose a new image retrieval algorithm using the block classification. More specifically, we classify nonoverlappint small image blocks into texture, monotone, and various edges. Using these classification results and the RGB color histogram, we propose a new similarity measure which considers both local and global fretures. According to our experimental results using 232 color images, the retrieval efficiencies of the proposed and the previous methods were 0.610 and 0.522, respectively, which implies that the proposed algorithm yields better performance.

  • PDF

Data-Adaptive ECOC for Multicategory Classification

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Error Correcting Output Codes (ECOC) can improve generalization performance when applied to multicategory classification problem. In this study we propose a new criterion to select hyperparameters included in ECOC scheme. Instead of margins of a data we propose to use the probability of misclassification error since it makes the criterion simple. Using this we obtain an upper bound of leave-one-out error of OVA(one vs all) method. Our experiments from real and synthetic data indicate that the bound leads to good estimates of parameters.

  • PDF