International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.171-176
/
2022
A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.
Kazi, Abdul Karim;Farooq, Muhammad Umer;Fatima, Zainab;Hina, Saman;Abid, Hasan
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.223-229
/
2022
LinkedIn is one of the most job hunting and career-growing applications in the world. There are a lot of opportunities and jobs available on LinkedIn. According to statistics, LinkedIn has 738M+ members. 14M+ open jobs on LinkedIn and 55M+ Companies listed on this mega-connected application. A lot of vacancies are available daily. LinkedIn data has been used for the research work carried out in this paper. This in turn can significantly tackle the challenges faced by LinkedIn and other job posting applications to improve the levels of jobs available in the industry. This research introduces Text Processing in natural language processing on datasets of LinkedIn which aims to find out the jobs that appear most in a month or/and year. Therefore, the large data became renewed into the required or needful source. This study thus uses Multinomial Naïve Bayes and Linear Support Vector Machine learning algorithms for text classification and developed a trained multilingual dataset. The results indicate the most needed job vacancies in any field. This will help students, job seekers, and entrepreneurs with their career decisions
AbdElaal, Hammam M.;Bouallegue, Belgacem;Elshourbagy, Motasem;Matter, Safaa S.;AbdElghfar, Hany A.;Khattab, Mahmoud M.;Ahmed, Abdelmoty M.
International Journal of Computer Science & Network Security
/
v.22
no.11
/
pp.1-10
/
2022
This study aims to build a model is capable of classifying the categories of hadith, according to the reliability of hadith' narrators (sahih, hassan, da'if, maudu) and according to what was attributed to the Prophet Muhammad (saying, doing, describing, reporting ) using the supervised learning algorithms, with a view to discover a relationship between these classifications, based on the outputs of this model, which might be useful to avoid the controversy and useless debate on automatic classifications of hadith, using some of the statistical methods such as chi-square, information gain and association rules. The experimental results showed that there is a relation between these classifications, most of Sahih hadiths are belong to saying class, and most of maudu hadiths are belong to reporting class. Also the best classifier had given high accuracy was MultinomialNB, it achieved higher accuracy reached up to 0.9708 %, for his ability to process high dimensional problems and identifying the most important features that are relevant to target data in training stage. Followed by LinearSVC classifier, reached up to 0.9655, and finally, KNeighborsClassifier reached up to 0.9644.
The public open signals from Global Navigation Satellite System (GNSS) including Global positioning system (GPS) are used widely by many peoples in the world except for the public regulated restriction signals which are encrypted. Nowadays there are growing concerns about GNSS signal spoofing which can deceive the GNSS receivers by abusing these open services. To counter these spoofing threats, many researches have been studied including array antenna techniques which can detect the direction of arrival by means of Multiple Signal Classification (MUSIC) algorithm. Originally the array antenna techniques were developed to countermeasure the jamming signal in electronic warfare by using the nulling or beamforming algorithm toward a certain direction. In this paper, we study the anti-spoofing techniques using array antenna to overcome the jamming and spoofing issues simultaneously. First, we will present the theoretical analysis results of spoofing signal response of Minimum Variance Distortionless Response (MVDR) algorithm in array antenna. Then the eigenvector algorithm of covariance matrix is suggested and verified to work with the existing anti-jamming method. The modeling and simulation are used to verify the effectiveness of the anti-spoofing algorithm. Also, the field test results show that the array antenna system with the proposed algorithms can perform the anti-spoofing function. This anti-spoofing method using array antenna is very effective in the view point of solving both the jamming and spoofing problems using the same array antenna hardware.
In this paper, the purpose is to create a standard of AI training dataset type for commercial space design. As the market size of the field of space design continues to increase and the time spent increases indoors after COVID-19, interest in space is expanding throughout society. In addition, more and more consumers are getting used to the digital environment. Therefore, If you identify trends and preemptively propose the atmosphere and specifications that customers require quickly and easily, you can increase customer trust and conduct effective sales. As for the data set type, commercial districts were divided into a total of 8 categories, and images that could be processed were derived by refining 4,009,30MB JPG format images collected through web crawling. Then, by performing bounding and labeling operations, we developed a 'Dataset for AI Training' of 3,356 commercial space image data in CSV format with a size of 2.08MB. Through this study, elements of spatial images such as place type, space classification, and furniture can be extracted and used when developing AI algorithms, and it is expected that images requested by clients can be easily and quickly collected through spatial image input information.
Detecting cracks on a concrete structure is crucial for structural maintenance, a crack being an indicator of possible damage. Conventional crack detection methods which include visual inspection and non-destructive equipment, are typically limited to a small region and require time-consuming processes. Recently, to reduce the human intervention in the inspections, various researchers have sought computer vision-based crack analyses: One class is filter-based methods, which effectively transforms the image to detect crack edges. The other class is using deep-learning algorithms. For example, convolutional neural networks have shown high precision in identifying cracks in an image. However, when the objective is to classify not only the existence of crack but also the types of cracks, only a few studies have been reported, limiting their practical use. Thus, the presented study develops an image processing procedure that detects cracks and classifies crack types; whether the image contains a crazing-type, single crack, or multiple cracks. The properties and steps in the algorithm have been developed using field-obtained images. Subsequently, the algorithm is validated from additional 227 images obtained from an open database. For test datasets, the proposed algorithm showed accuracy of 92.8% in average. In summary, the developed algorithm can precisely classify crazing-type images, while some single crack images may misclassify into multiple cracks, yielding conservative results. As a result, the successful results of the presented study show potentials of using vision-based technologies for providing crack information with reduced human intervention.
International Journal of Computer Science & Network Security
/
v.23
no.5
/
pp.1-6
/
2023
Text mining (TM) is most widely used to process the various unstructured text documents and process the data present in the various domains. The other name for text mining is text classification. This domain is most popular in many domains such as movie reviews, product reviews on various E-commerce websites, sentiment analysis, topic modeling and cyber bullying on social media messages. Cyber-bullying is the type of abusing someone with the insulting language. Personal abusing, sexual harassment, other types of abusing come under cyber-bullying. Several existing systems are developed to detect the bullying words based on their situation in the social networking sites (SNS). SNS becomes platform for bully someone. In this paper, An Enhanced text mining approach is developed by using Ensemble Algorithm (ETMA) to solve several problems in traditional algorithms and improve the accuracy, processing time and quality of the result. ETMA is the algorithm used to analyze the bullying text within the social networking sites (SNS) such as facebook, twitter etc. The ETMA is applied on synthetic dataset collected from various data a source which consists of 5k messages belongs to bullying and non-bullying. The performance is analyzed by showing Precision, Recall, F1-Score and Accuracy.
The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.
Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
International Journal of Computer Science & Network Security
/
v.23
no.7
/
pp.39-48
/
2023
Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.
Jiyoon Choi;Sihyeon Kim;Songe Lee;Kyunghun Kim;Sudong Lee
Journal of the Korea Safety Management & Science
/
v.25
no.3
/
pp.63-71
/
2023
The construction industry stands out for its higher incidence of accidents in comparison to other sectors. A causal analysis of the accidents is necessary for effective prevention. In this study, we propose a data-driven causal analysis to find significant factors of fatal construction accidents. We collected 14,318 cases of structured and text data of construction accidents from the Construction Safety Management Integrated Information (CSI). For the variables in the collected dataset, we first analyze their patterns and correlations with fatal construction accidents by statistical analysis. In addition, machine learning algorithms are employed to develop a classification model for fatal accidents. The integration of SHAP (SHapley Additive exPlanations) allows for the identification of root causes driving fatal incidents. As a result, the outcome reveals the significant factors and keywords wielding notable influence over fatal accidents within construction contexts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.