• 제목/요약/키워드: Classification Algorithms

검색결과 1,198건 처리시간 0.034초

기계적 모터 고장진단을 위한 머신러닝 기법 (A Machine Learning Approach for Mechanical Motor Fault Diagnosis)

  • 정훈;김주원
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.57-64
    • /
    • 2017
  • In order to reduce damages to major railroad components, which have the potential to cause interruptions to railroad services and safety accidents and to generate unnecessary maintenance costs, the development of rolling stock maintenance technology is switching from preventive maintenance based on the inspection period to predictive maintenance technology, led by advanced countries. Furthermore, to enhance trust in accordance with the speedup of system and reduce maintenances cost simultaneously, the demand for fault diagnosis and prognostic health management technology is increasing. The objective of this paper is to propose a highly reliable learning model using various machine learning algorithms that can be applied to critical rolling stock components. This paper presents a model for railway rolling stock component fault diagnosis and conducts a mechanical failure diagnosis of motor components by applying the machine learning technique in order to ensure efficient maintenance support along with a data preprocessing plan for component fault diagnosis. This paper first defines a failure diagnosis model for rolling stock components. Function-based algorithms ANFIS and SMO were used as machine learning techniques for generating the failure diagnosis model. Two tree-based algorithms, RadomForest and CART, were also employed. In order to evaluate the performance of the algorithms to be used for diagnosing failures in motors as a critical railroad component, an experiment was carried out on 2 data sets with different classes (includes 6 classes and 3 class levels). According to the results of the experiment, the random forest algorithm, a tree-based machine learning technique, showed the best performance.

Big 5 성격 요소와 머신 러닝 알고리즘을 통한 창의적인 사람들의 특징 연구 (Feature Selection for Creative People Based on Big 5 Personality traits and Machine Learning Algorithms)

  • 김용준
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.97-102
    • /
    • 2019
  • 창의적인 사람에 대한 정확한 기준이나 수치화를 사용하여 체계적인 분류와 분석 방법이 없었기에 정의하는 데에 어려움이 많다. 이 문제를 해결하기 위하여 본 연구에서는 창의적인 사람을 어떻게 구분 지을 수 있을지에 대한 것과 어떤 유사한 성격이 있는지 분석한다. 본 연구에서 우선 Big 5 성격 특성 기법을 이용하여 설문조사를 진행하고, 그 설문조사로 얻은 데이터 세트를 가지고 데이터 마이닝 도구인 WEKA를 이용하여 데이터 세트를 분류하고 분석한 뒤, 창의적인 사람들과 연관성 있는 성격 특징들을 다양한 머신 러닝 기법을 이용하여 분석하는 것을 목표로 진행하였다. 7개의 특징 선택 알고리즘을 활용하고, 특징 선택 알고리즘들로 분류된 특징 집단을 선택하여 머신 러닝 알고리즘에 적용하여 정확도를 알아냈고, 서포트 벡터 머신을 통해 나온 특징이 가장 높은 분류 결과를 도출하였다.

암반공학분야에 적용된 인공지능 알고리즘 분석 (An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering)

  • 김양균
    • 터널과지하공간
    • /
    • 제31권1호
    • /
    • pp.25-40
    • /
    • 2021
  • 4차 산업혁명 시대의 도래에 따라 암반공학분야에서도 인공지능을 활용한 연구가 점차 증가하고 있다. 본 논문에서는 인공지능에 대한 이해와 그 활용도를 더욱 증진시키기 위하여, 암반공학기술의 주된 적용대상인 터널, 발파, 광산과 관련된 최근의 국내외 연구 중 인공지능이 활용된 논문들에서 그 알고리즘의 종류와 적용방법을 분석하였다. 터널에서는 암반분류, TBM굴진율 및 막장전방 지질 예측, 발파에서는 암반의 파쇄도 및 비산거리, 광산에서는 폐광의 침하가능성 예측을 위해 주로 활용되고 있으며, 기계학습의 다양한 알고리즘 중 인공신경망이 압도적으로 많이 활용되고 있는 것으로 나타났다. 연구결과의 정확도와 신뢰성 제고를 위해 사용하고자 하는 인공지능 알고리즘에 대한 정확하고 상세한 이해가 필수적이며, 현재는 접근이나 분석이 난해한 암반공학 분야의 다양한 문제해결을 위해 기계학습뿐 아니라 CNN 또는 RNN과 같은 딥러닝을 활용한 연구 아이디어들이 점차 증가될 것으로 기대된다.

SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법 (Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM)

  • 한영진;조인휘
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권12호
    • /
    • pp.445-452
    • /
    • 2022
  • 디지털 세상에서 불균형 데이터에 대한 클래스 분포는 중요한 부분이며 사이버 보안에 큰 의미를 차지한다. 불균형 데이터의 비정상적인 활동을 찾고 문제를 해결해야 한다. 모든 트랜잭션의 패턴을 추적할 수 있는 시스템이 필요하지만, 일반적으로 패턴이 비정상인 불균형 데이터로 기계학습을 하면 소수 계층에 대한 성능은 무시되고 저하되며 예측 모델은 부정확하게 편향될 수 있다. 본 논문에서는 불균형 데이터 세트를 해결하기 위한 접근 방식으로 Synthetic Minority Oversampling Technique(SMOTE)와 Light GBM 알고리즘을 이용하여 추정치를 결합하여 대상 변수를 예측하고 정확도를 향상시켰다. 실험 결과는 Logistic Regression, Decision Tree, KNN, Random Forest, XGBoost 알고리즘과 비교하였다. 정확도, 재현율에서는 성능이 모두 비슷했으나 정밀도에서는 2개의 알고리즘 Random Forest 80.76%, Light GBM 97.16% 성능이 나왔고, F1-score에서는 Random Forest 84.67%, Light GBM 91.96% 성능이 나왔다. 이 실험 결과로 Light GBM은 성능이 5개의 알고리즘과 비교하여 편차없이 비슷하거나 최대 16% 향상됨을 접근 방식으로 확인할 수 있었다.

초등 인공지능 교육을 위한 데이터 범주와 알고리즘 종류 탐색 (Exploring Data Categories and Algorithm Types for Elementary AI Education)

  • 심재권
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.167-173
    • /
    • 2021
  • 본 연구는 초등학생 대상의 인공지능 교육에서 다루는 알고리즘의 종류, 활용하는 도구와 데이터의 범주를 논의하는 것을 목적으로 초등예비교사 11명을 대상으로 15주 동안 데이터, 인공지능 알고리즘, 인공지능 교육 플랫폼을 교육 및 실습한 후 설문하여 초등학생 수준을 고려한 데이터와 알고리즘의 범주, 교육 도구를 제시하고 적합성을 분석하였다. 설문을 통해 교사가 수업목적에 따라 사전에 데이터를 선정 및 가공하여 교육에 사용하는 것이 가장 적합하며, 분류와 예측 알고리즘이 초등 인공지능 교육에서 다루기에 적절하다는 결론을 도출하였다. 또한, 엔트리가 인공지능 교육 도구로서 가장 적합하며 인공지능의 학습이라는 개념을 교육하기 위해 수학적 지식을 설명하는 자료가 필요함을 확인하였다. 본 연구는 초등학생의 인공지능 교육에서 다루는 알고리즘과 데이터의 범주를 구체적으로 제시하고 이와 관련된 수학교육에 대한 필요성과 적절한 교육 도구를 분석하였다는 점에서 의의가 있다.

  • PDF

Bhattacharyya 커널을 적용한 Centroid Neural Network (Centroid Neural Network with Bhattacharyya Kernel)

  • 이송재;박동철
    • 한국통신학회논문지
    • /
    • 제32권9C호
    • /
    • pp.861-866
    • /
    • 2007
  • 본 논문은 가우시안 확률분포함수 (Gaussian Probability Distribution Function) 데이터 군집화를 위해 중심신경망 (Centroid Neural Network, CNN)에 Bhattacharyya 커널을 적용한 군집화 알고리즘 (Bhattacharyya Kernel based CNN, BK-CNN)을 제안한다. 제안된 BK-CNN은 무감독 알고리즘인 중심신경망을 기반으로 하고 있으며, 커널 방법을 이용하여 데이터를 특징공간에서 투영한다. 입력공간의 비선형 문제를 선형적으로 해결하기 위해 제안한 커널 방법인데, 확률분포 사이의 거리측정을 위해 Bhattacharyya 거리를 이용한 커널방법을 사용하였다. 제안된 BK-CNN을 영상데이터 분류의 문제에 적용했을 때, 제안된 BK-CNN 알고리즘이 Bhattacharyya 커널을 적용한 k-means, 자기조직지도(Self-Organizing Map)와 중심 신경망등의 기존 알고리즘보다 1.7% - 4.3%의 평균 분류정확도 향상을 가져옴을 확인할 수 있었다.

논문 인용에 따른 학술지 군집화 방법의 비교 (Comparison of journal clustering methods based on citation structure)

  • 김진광;김소형;오창혁
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.827-839
    • /
    • 2015
  • 학술지 인용 데이터베이스에서 네트워크 구조분석을 통해 학술지의 공동체를 추출하는 것은 인용관계에 따른 학술지의 집단을 파악하는 유용한 수단이다. 전 세계적으로 널리 활용되는 학술지 인용데이터베이스인 Thomson Reuters의 SCI나 Elsevier의 SCOPUS가 제공하는 자료를 활용하여 인용관계에 따른 공동체 구조를 파악하는 시도가 이루어진 바 있으나, 국내 학술지 인용 데이터베이스인 KCI에서는 이러한 연구가 현재까지는 이루어지지 않은 것으로 알려져 있다. 따라서 본 연구에서는 기존의 여러 가지 네트워크 군집화 알고리즘을 이용하여 KCI에 등재되어 있는 자연과학 분야 학술지를 대상으로 인용관계에 따른 공동체를 파악하고 KCI에 등록된 학술지 분류와 비교하여 보았다. 적용된 군집화 방법 중 인포맵 알고리즘에 의한 분류가 KCI 등재 자연과학 분야 학술지의 인용관계 구조를 잘 반영하며, 기존의 KCI 분류와 가장 유사한 것으로 나타났다. 본 연구를 통해 얻은 KCI의 기존 분류와 차이점들은 장차 KCI 학술지의 재분류가 이루어질 시 고려의 대상이 될 수도 있을 것이다.

뇌파/뇌자도 전류원 국지화의 공간분해능 향상을 위한 독립성분분석 기반의 부분공간 탐색 알고리즘 (An ICA-Based Subspace Scanning Algorithm to Enhance Spatial Resolution of EEG/MEG Source Localization)

  • 정영진;권기운;임창환
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권6호
    • /
    • pp.456-463
    • /
    • 2010
  • In the present study, we proposed a new subspace scanning algorithm to enhance the spatial resolution of electroencephalography (EEG) and magnetoencephalography(MEG) source localization. Subspace scanning algorithms, represented by the multiple signal classification (MUSIC) algorithm and the first principal vector (FINE) algorithm, have been widely used to localize asynchronous multiple dipolar sources in human cerebral cortex. The conventional MUSIC algorithm used principal component analysis (PCA) to extract the noise vector subspace, thereby having difficulty in discriminating two or more closely-spaced cortical sources. The FINE algorithm addressed the problem by using only a part of the noise vector subspace, but there was no golden rule to determine the number of noise vectors. In the present work, we estimated a non-orthogonal signal vector set using independent component analysis (ICA) instead of using PCA and performed the source scanning process in the signal vector subspace, not in the noise vector subspace. Realistic 2D and 3D computer simulations, which compared the spatial resolutions of various algorithms under different noise levels, showed that the proposed ICA-MUSIC algorithm has the highest spatial resolution, suggesting that it can be a useful tool for practical EEG/MEG source localization.

설진 시스템 특허동향 분석 (Analysis of patent trends of computerized tongue diagnosis systems)

  • 정창진;이유정;김재욱;김근호
    • 대한한의진단학회지
    • /
    • 제17권2호
    • /
    • pp.77-89
    • /
    • 2013
  • Objectives Tongue diagnosis is an important diagnostic method in traditional Eastern medicine, and it has a high potential to be used in the future healthcare because of easy, quick, and non-contact measuring features. Recently, research and development efforts on computerized tongue diagnosis systems (CTDS) have been active that led to the technical advancements in the field of photographing techniques, image extraction and classification algorithms. In this study, we analyzed the trends in the CTDS patents. Using the WIPS search engine (www.wipsglobal.com), quantitative and qualitative patent analyses were performed through Korea, China, Japan, U.S.A and Europe. Methods For a systematic search and data analysis, we defined patent categories based on the application area and technical details. By applying thus-obtained categorical key words, we obtained 360 relevant patents on photographing techniques, image extraction and classification algorithms for the purpose of diagnosis or security. Results As a result, companies related to image acquisition, medical imaging and mobile devices and research groups of universities in East Asia were major patent applicants. In all the five countries, the number of patents have been increasing since 1980. In particular, technology related to color correction and image segmentation were most actively patented categories, and expected to continue a high application rate.

유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택 (Feature Selection for Anomaly Detection Based on Genetic Algorithm)

  • 서재현
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.1-7
    • /
    • 2018
  • 데이터 전처리 기법 중 하나인 특징 선택은 대규모 데이터셋을 다루는 다양한 응용분야에서 주요 연구 분야 중 하나로 각광받고 있다. 특징 선택은 패턴 인식, 기계학습 및 데이터 마이닝에서 사용됐고, 최근에는 텍스트 분류, 이미지 검색, 침입 탐지 및 게놈 분석과 같은 다양한 분야에 널리 적용되고 있다. 제안 방법은 메타 휴리스틱 알고리즘 중의 하나인 유전 알고리즘을 기반으로 한다. 특징 부분 집합을 찾는 방법은 크게 필터(filter) 방법과 래퍼(wrapper) 방법이 있는데, 본 연구에서는 최적의 특징 부분 집합을 찾기 위해 실제 분류기를 사용한 평가를 하는 래퍼 방법을 사용한다. 실험에 사용한 훈련 데이터셋은 클래스 불균형이 심하여 희소클래스에 대한 분류 성능을 높이기 어렵다. SMOTE 기법을 적용한 훈련 데이터셋을 사용하여 특징 선택을 하고 다양한 기계학습 알고리즘을 사용하여 선택한 특징들의 성능을 평가한다.