• Title/Summary/Keyword: Classification Algorithms

Search Result 1,198, Processing Time 0.031 seconds

A Fully Convolutional Network Model for Classifying Liver Fibrosis Stages from Ultrasound B-mode Images (초음파 B-모드 영상에서 FCN(fully convolutional network) 모델을 이용한 간 섬유화 단계 분류 알고리즘)

  • Kang, Sung Ho;You, Sun Kyoung;Lee, Jeong Eun;Ahn, Chi Young
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • In this paper, we deal with a liver fibrosis classification problem using ultrasound B-mode images. Commonly representative methods for classifying the stages of liver fibrosis include liver biopsy and diagnosis based on ultrasound images. The overall liver shape and the smoothness and roughness of speckle pattern represented in ultrasound images are used for determining the fibrosis stages. Although the ultrasound image based classification is used frequently as an alternative or complementary method of the invasive biopsy, it also has the limitations that liver fibrosis stage decision depends on the image quality and the doctor's experience. With the rapid development of deep learning algorithms, several studies using deep learning methods have been carried out for automated liver fibrosis classification and showed superior performance of high accuracy. The performance of those deep learning methods depends closely on the amount of datasets. We propose an enhanced U-net architecture to maximize the classification accuracy with limited small amount of image datasets. U-net is well known as a neural network for fast and precise segmentation of medical images. We design it newly for the purpose of classifying liver fibrosis stages. In order to assess the performance of the proposed architecture, numerical experiments are conducted on a total of 118 ultrasound B-mode images acquired from 78 patients with liver fibrosis symptoms of F0~F4 stages. The experimental results support that the performance of the proposed architecture is much better compared to the transfer learning using the pre-trained model of VGGNet.

Automatic Classification of Advertising Restaurant Blogs Using Machine Learning Techniques (기계학습기법을 이용한 광고 외식 블로그의 자동분류)

  • Chang, Jae-Young;Lee, Byung-Jun;Cho, Se-Jin;Han, Da-Hye;Lee, Kyu-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.55-62
    • /
    • 2016
  • Recently, users choosing a restaurant basedon information provided by blogs are increasing significantly. However, those of most blogs are unreliable since domestic restaurant blogs are occupied by advertising postings written by 'power bloggers'. Thus, in order to ensure the reliability of blogs, it is necessary to filter the advertising blogs which are sometimes false or exaggerated. In this paper, we propose the method of distinguishing the advertising blogs utilizing an automatic classification technique. In the proposed technique, we first manually collected advertising restaurant blogs, and then analyzed features which are commonly found in those blogs. Using the extracted features, we determined whether a given blog is advertising one applying automatic classification algorithms. Additionally, we select the features and the algorithm which guarantee optimal classification performance through comparative experiments.

A classification of the journals in KCI using network clustering methods (KCI 등재 학술지의 분류를 위한 네트워크 군집화 방법의 비교)

  • Kim, Jinkwang;Kim, Sohyung;Oh, Changhyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.947-957
    • /
    • 2016
  • KCI is a database for the citations of journals and papers published in Korea. Classification of a journal listed in KCI was mainly determined by the publisher who registered the journal at the time of application for the journal. However, journal classification in KCI was known for not properly representing the quoting rate between journals. In this study, we extracted communities of the journals registerd in KCI based on quoting relationship using various network clustering algorithms. Among them, the infomap algorithm turned out to give a classification more being alike to the current KCI's in the aspect of the modular structure.

A study on classification of textile design and extraction of regions of interest (텍스타일 디자인 분류 및 관심 영역 도출에 대한 연구)

  • Chae, Seung Wan;Lee, Woo Chang;Lee, Byoung Woo;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.70-75
    • /
    • 2021
  • Grouping and classifying similar designs in design increase efficiency in terms of management and provide convenience in terms of use. Using artificial intelligence algorithms, this study attempted to classify textile designs into four categories: dots, flower patterns, stripes, and geometry. In particular, we explored whether it is possible to find and explain the regions of interest underlying classification from the perspective of artificial intelligence. We randomly extracted a total of 4,536 designs at a ratio of 8:2, comprising 3,629 for training and 907 for testing. The models used in the classification were VGG-16 and ResNet-34, both of which showed excellent classification performance with precision on flower pattern designs of 0.79%, 0.89% and recall of 0.95% and 0.38%. Analysis using the Local Interpretable Model-agnostic Explanation (LIME) technique has shown that geometry and flower-patterned designs derived shapes and petals from the region of interest on which classification was based.

Convolutional neural network based traffic sound classification robust to environmental noise (합성곱 신경망 기반 환경잡음에 강인한 교통 소음 분류 모델)

  • Lee, Jaejun;Kim, Wansoo;Lee, Kyogu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.469-474
    • /
    • 2018
  • As urban population increases, research on urban environmental noise is getting more attention. In this study, we classify the abnormal noise occurring in traffic situation by using a deep learning algorithm which shows high performance in recent environmental noise classification studies. Specifically, we classify the four classes of tire skidding sounds, car crash sounds, car horn sounds, and normal sounds using convolutional neural networks. In addition, we add three environmental noises, including rain, wind and crowd noises, to our training data so that the classification model is more robust in real traffic situation with environmental noises. Experimental results show that the proposed traffic sound classification model achieves better performance than the existing algorithms, particularly under harsh conditions with environmental noises.

A Text Content Classification Using LSTM For Objective Category Classification

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.39-46
    • /
    • 2021
  • AI is deeply applied to various algorithms that assists us, not only daily technologies like translator and Face ID, but also contributing to innumerable fields in industry, due to its dominance. In this research, we provide convenience through AI categorization, extracting the only data that users need, with objective classification, rather than verifying all data to find from the internet, where exists an immense number of contents. In this research, we propose a model using LSTM(Long-Short Term Memory Network), which stands out from text classification, and compare its performance with models of RNN(Recurrent Neural Network) and BiLSTM(Bidirectional LSTM), which is suitable structure for natural language processing. The performance of the three models is compared using measurements of accuracy, precision, and recall. As a result, the LSTM model appears to have the best performance. Therefore, in this research, text classification using LSTM is recommended.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Efficient Transformer Dissolved Gas Analysis and Classification Method (효율적인 변압기 유중가스 분석 및 분류 방법)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.563-570
    • /
    • 2018
  • This paper proposes an efficient dissolved gas analysis(DGA) and classification method of an oil-filled transformer using machine learning algorithms to solve problems inherent in IEC 60599. In IEC 60599, a certain diagnosis criteria do not exist, and duplication area is existed. Thus, it is difficult to make a decision without any experts since the IEC 60599 standard can not support analysis and classification of gas date of a power transformer in that criteria. To address these issue. we propose a dissolved gas analysis(DGA) and classification method using a machine learning algorithm. We evaluate the performance of the proposed method using support vector machines with dissolved gas dataset extracted from a power transformer in the real industry. To validate the performance of the proposed method, we compares the proposed method with the IEC 60599 standard. Experimental results show that the proposed method outperforms the IEC 60599 in the classification accuracy.

Keyword Extraction through Text Mining and Open Source Software Category Classification based on Machine Learning Algorithms (텍스트 마이닝을 통한 키워드 추출과 머신러닝 기반의 오픈소스 소프트웨어 주제 분류)

  • Lee, Ye-Seul;Back, Seung-Chan;Joe, Yong-Joon;Shin, Dong-Myung
    • Journal of Software Assessment and Valuation
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • The proportion of users and companies using open source continues to grow. The size of open source software market is growing rapidly not only in foreign countries but also in Korea. However, compared to the continuous development of open source software, there is little research on open source software subject classification, and the classification system of software is not specified either. At present, the user uses a method of directly inputting or tagging the subject, and there is a misclassification and hassle as a result. Research on open source software classification can also be used as a basis for open source software evaluation, recommendation, and filtering. Therefore, in this study, we propose a method to classify open source software by using machine learning model and propose performance comparison by machine learning model.

A Study on the i-YOLOX Architecture for Multiple Object Detection and Classification of Household Waste (생활 폐기물 다중 객체 검출과 분류를 위한 i-YOLOX 구조에 관한 연구)

  • Weiguang Wang;Kyung Kwon Jung;Taewon Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.135-142
    • /
    • 2023
  • In addressing the prominent issues of climate change, resource scarcity, and environmental pollution associated with household waste, extensive research has been conducted on intelligent waste classification methods. These efforts range from traditional classification algorithms to machine learning and neural networks. However, challenges persist in effectively classifying waste in diverse environments and conditions due to insufficient datasets, increased complexity in neural network architectures, and performance limitations for real-world applications. Therefore, this paper proposes i-YOLOX as a solution for rapid classification and improved accuracy. The proposed model is evaluated based on network parameters, detection speed, and accuracy. To achieve this, a dataset comprising 10,000 samples of household waste, spanning 17 waste categories, is created. The i-YOLOX architecture is constructed by introducing the Involution channel convolution operator and the Convolution Branch Attention Module (CBAM) into the YOLOX structure. A comparative analysis is conducted with the performance of the existing YOLO architecture. Experimental results demonstrate that i-YOLOX enhances the detection speed and accuracy of waste objects in complex scenes compared to conventional neural networks. This confirms the effectiveness of the proposed i-YOLOX architecture in the detection and classification of multiple household waste objects.