• 제목/요약/키워드: Classification Algorithms

검색결과 1,198건 처리시간 0.041초

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

기하학적 특징 추가를 통한 얼굴 감정 인식 성능 개선 (Improvement of Facial Emotion Recognition Performance through Addition of Geometric Features)

  • 정호영;한희일
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.155-161
    • /
    • 2024
  • 본 논문에서는 기존의 CNN 기반 얼굴 감정 분석 모델에 랜드마크 정보를 특징 벡터로 추가하여 새로운 모델을 제안한다. CNN 기반 모델을 이용한 얼굴 감정 분류 연구는 다양한 방법으로 연구되고 있으나 인식률이 매우 저조한 편이다. 본 논문에서는 CNN 기반 모델의 성능을 향상시키기 위하여 CNN 모델에 ASM으로 구한 랜드마크 기반 완전 연결 네트워크를 결합함으로써 얼굴 표정 분류 정확도를 향상시키는 알고리즘을 제안한다. CNN 모델에 랜드마크를 포함시킴으로써 인식률이 VGG 0.9%, Inception 0.7% 개선되었으며, 랜드마크에 FACS 기반 액션 유닛 추가를 통하여 보다 VGG 0.5%, Inception 0.1%만큼 향상된 결과를 얻을 수 있음을 실험으로 확인하였다.

Contour Tree를 이용한 LiDAR Point 데이터의 분할 (Segmentation of LiDAR Point Data Using Contour Tree)

  • 한동엽;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.463-467
    • /
    • 2006
  • Several segmentation algorithms have been proposed for DTM generation or building modeling from airborne LiDAR data. Three components are important for accurate segmentation: (i) the adjacent relationship of n-nearest points or mesh, etc. (ii) the effective decision parameters of height, slope, curvature, and plane condition, (iii) grouping methods. In this paper, we created the topology of point cloud data using the contour tree and implemented the region-growing Terrain and non-terrain points were classified correctly in the segmented data, which can be used also for feature classification.

  • PDF

칼라이미지의 영역분할을 위한 두 알고리즘의 비교분석 (Comparative Analyses of Two Algorithms for Region Segmentation of Color Image)

  • 허민권;성병우;최흥국;김상균;서정욱
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.83-88
    • /
    • 1998
  • 칼라이미지를 인식 및 분석을 하기 위해서는 이미지에 대한 영역분할이 우선적으로 먼저 이루어져야 되므로, 본 연구에서는 영역분할에 대한 두 개의 알고리즘을 구현하여 비교 분석하였다. 여러 가지 영역분할 방법 중에서 가장 쉽게 적용할 수 있고 또 가장 빠르게 영역을 분할 할 수 있는 Box classification 알고리즘을 이용하여 심근조직 표본의 현미경 영상이미지에 대해서 육안으로 선택한 영역과 histogram을 미분하여 최저 값에 문턱치를 정하여 줌으로써 선택한 영역에 대해 추출하고 이들 각각을 HLS 칼라모델에서 비교 분석하였다.

  • PDF

인공지능 기법을 이용한 텍스트 인식에 관한 연구 (A Study On The Text Recognition Using Artificial Intelligence Technique)

  • 이행세;최태영;김영길;김정우
    • 대한전자공학회논문지
    • /
    • 제26권11호
    • /
    • pp.1782-1793
    • /
    • 1989
  • Stroke crossing number, syntactic pattern recognition procedure, top down recognition structure, and heuristic approach are studied for the Korean text recognition. We propose new algorithms: 1)Korean vowel seperation using limited scanning method in the Korean characters, 2) extracting strokes using stroke width method, 3) stroke crossing number and its properties, 4) average, standard deviation, and mode of stroke crossing number, and 5) classification and recognition methods of limited chinese character. These are studied with computer simuladtions and experiments.

  • PDF

Comparison of Boosting and SVM

  • Kim, Yong-Dai;Kim, Kyoung-Hee;Song, Seuck-Heun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.999-1012
    • /
    • 2005
  • We compare two popular algorithms in current machine learning and statistical learning areas, boosting method represented by AdaBoost and kernel based SVM (Support Vector Machine) using 13 real data sets. This comparative study shows that boosting method has smaller prediction error in data with heavy noise, whereas SVM has smaller prediction error in the data with little noise.

  • PDF

Modeling of Environmental Survey by Decision Trees

  • 박희창;조광현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 추계학술대회
    • /
    • pp.63-75
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. We analyze Gyeongnam social indicator survey data using decision tree techniques for environmental information. We can use these decision tree outputs for environmental preservation and improvement.

  • PDF

Modeling of Environmental Survey by Decision Trees

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.759-771
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. We analyze Gyeongnam social indicator survey data using decision tree techniques for environmental information. We can use these decision tree outputs for environmental preservation and improvement.

  • PDF

그레이 블록 거리 알고리즘을 이용한 독립성분분석과 첨도에서의 영상분류 (Image Classification for Independent Component Analysis and Kurtosis Using Grey Block Distance Algorithm)

  • 홍준식;백승철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.505-507
    • /
    • 2002
  • 본 논문에서는 그레이 블록 거리알고리즘(grey block algorithms, 이하 GBD)을 이용하여 독립성분분석(independent component analysis; 이하 ICA) 및 첨도(Kurtosis)에서의 영상간의 거리를 측정하여, 어느 정도 영상간의 상대적 식별을 용이하게 하여 영상 분류가 되는지 모의 실험을 통하여 확인하고자 한다. 모의 실험 결과로부터, ICA에서는 k는 8까지 상대적 식별이 되어 영상 분류가 되었고, 첨도에서는 영상간의 상대적 식별을 k가 4까지만 블록을 분할 할 수 있었다.

  • PDF

독립성분분석에서의 제안된 GBD 알고리즘을 이용한 영상 분류 (Image Classification Using Grey Block Distance Algorithms for Independent Component Analysis)

  • 홍준식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2674-2676
    • /
    • 2002
  • 본 논문에서는 독립성분분석(independent component analysis; 이하 ICA)에서의 새로운 그레이 블록 거리(grey block distance; GBD, 이하 GBD)알고리즘을 이용한 영상 분류 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하여 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 결과로부터 기존의 GBD 알고리즘에 비하여 영상간의 상대적 식별이 더 용이하여 빨리 수렴이 되는 것을 모의 실험을 통하여 확인하였다.

  • PDF