• 제목/요약/키워드: Classification Algorithms

검색결과 1,198건 처리시간 0.024초

다시점 비디오의 시공간적 중복도를 높여 부호화 성능을 향상시키는 새로운 조명 불일치 보상 기법 (New Illumination compensation algorithm improving a multi-view video coding performance by advancing its temporal and inter-view correlation)

  • 이동석;유지상
    • 방송공학회논문지
    • /
    • 제15권6호
    • /
    • pp.768-782
    • /
    • 2010
  • 다시점 비디오의 조명 불일치 현상은 서로 다른 카메라의 위치와 카메라간의 불완전한 보정(calibration)으로 인하여 발생한다. 이러한 인접 시점간의 색상 불일치는 획득된 영상을 참조 영상으로 이용하여 부호화하는 다시점 비디오 부호화(multi-view video coding)의 성능을 저하시키는 요인이 된다. 이러한 조명 불일치를 보상하기 위한 방법 중에서 히스토그램 매칭(histogram matching)을 이용한 전처리 기법이 있다. 히스토그램 매칭을 통해 모든 시점 영상의 히스토그램은 정해진 참조 시점 영상의 히스토그램으로 매칭되어지고 다시점 비디오 부호화의 성능을 개선할 수 있다. 그러나 다시점 비디오 시퀀스는 카메라와 등장인물의 이동으로 인하여 시점 간 영상뿐만 아니라, 한 시점 내에 시간의 흐름에 따른 영상간의 히스토그램 분포가 서로 다를 수 있다. 참조 시점 시퀀스에 속한 모든 영상을 참조하는 기존의 히스토그램 매칭 기법은 시공간적으로 상관성이 높지 않은 영상의 조명을 효과적으로 보상하기에 적합하지 않다. 본 논문에서는 시점 영상 간의 색상 분포의 차이를 보이는 다시점 비디오를 보상하여 공간적 상관성을 높이기 위해 두 조건식이 반영된 영상분리 기법을 적용한 레이어별 히스토그램 매칭 기법과 시간의 흐름에 따라 색상 분포의 차이를 보이는 다시점 비디오를 비디오 부호화의 단위인 화면 그룹(group of pictures : GOP)별로 보상하여 시간적 상관성을 높이는 개별적인 히스토그램 매칭 기법을 제안한다. 실험을 통해 제안하는 조명 보상 기법이 기존의 조명 보상 기법보다 향상된 다시점 비디오 부호화 효율을 보이는 것을 확인하였다.

추론 및 비교사학습 기법 기반 레이블링을 적용한 탐지 모델 (A Detection Model using Labeling based on Inference and Unsupervised Learning Method)

  • 홍성삼;김동욱;김병익;한명묵
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.65-75
    • /
    • 2017
  • 탐지 모델은 인공지능 기법들이나 데이터 마이닝 기법, 또는 지능형 알고리즘들을 이용하여 어떠한 목적에 맞는 결과를 찾고자 하는 모델들이다. 사이버 보안에서는 주로 침입탐지, 악성코드 탐지, 침해사고 탐지, 공격 탐지로 활용되고 있다. 보안데이터와 같은 실제 환경에 수집되는 데이터들을 레이블이 되지 않은 데이터들이 많다. 클래스 레이블이 정해지지 않아 유형을 알 수 없는 데이터가 많아 정확한 탐지 및 분석을 하기 위해서는 레이블 결정과정이 필요하다. 본 논문에서 제안하는 방법은 레이블 결정을 위해 D-S 추론 알고리즘과 비교사 방법인 k-means 알고리즘을 적용하여 각 데이터의 레이블을 융합하여 결정할 수 있는 KDFL(K-means and D-S Fusion based Labeling)제안하였으며 이를 적용한 탐지 모델 구조를 제안하였다. 제안하는 방법은 실험을 통해 기존의 방법에 비해 탐지율, 정확도, F1-measure 성능 지표에서 우수한 성능을 나타냈다. 또한 오류율도 크게 개선된 결과를 나타내어 제안하는 방법의 성능을 검증할 수 있었다.

WiFi 핑거프린트를 이용한 지하철 위치 추적 정확성 향상을 위한 연구 (A Study on Improving Accuracy of Subway Location Tracking using WiFi Fingerprinting)

  • 안태기;안치형;남명우;박진홍;이영석
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2016
  • 본 논문에서는 GPS를 이용할 수 없는 지하철 승강장에서 움직이는 지하철의 위치 추적 정확성을 높이기 위해 WiFi 핑거프린트 기법에 k-nn기반 알고리즘들을 적용한 후 오류를 검출하고 비교하였다. 승강장내 지하철의 위치 정보는 지하철 제어를 위해 종합사령실에서 필요로 하며, 이용객의 안전과 편의를 위해 다양하게 사용되어지고 있다. 현재 역사 또는 승강장 내에는 승객의 편의를 위해 각 통신사별로 WiFi용 AP(Access Point)들이 다수 설치되어 있어 이를 활용한 다양한 위치 추정 연구들도 활발히 진행되고 있다. 본 연구에서는 설치되어진 WiFi용 AP를 활용할 경우와 신규로 WiFi용 AP를 설치할 경우등을 고려하여 다양한 조건에서 지하철의 위치를 추적할 수 있는 시뮬레이터를 개발한 후 모의실험을 진행하였다. 개발된 시뮬레이터는 설치된 WiFi용 AP들의 개수와 승강장 넓이, 지하철 진입속도 등에 따라 지하철의 위치를 추적할 수 있도록 설계되었다. 그리고 k-nn알고리즘과 fuzzy k-nn알고리즘을 선택적으로 적용할 수 있으며 핑거프린트 데이터베이스를 기반으로 4가지의 거리 측정 알고리즘을 적용하여 위치 추적 오류를 비교할 수 있도록 하였다. 시뮬레이터를 이용한 모의 실험결과 0.5m의 그리드 단위길이에 8개의 WiFi용 AP를 설치하고 'minkowski' 거리 측정 알고리즘을 적용한 k-nn알고리즘를 사용할 경우 가장 정확한 위치 추적결과를 얻을 수 있었다.

CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구 (A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree)

  • 황순환;한성렬;이후진
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.580-586
    • /
    • 2021
  • 현재 사출성형분야의 Computer Aided Testing(CAT) 방법론으로 CAE(Computer Aided Engineering)를 이용한 수치 해석 기법이 주를 이루고 있다. 그러나 최근 시뮬레이션에 추가로 인공지능 기법을 응용하는 방법론이 연구되고 있다. 우리는 지난 연구에서 다양한 Machine Learning 기법을 활용하여 사출 성형 공정에 따른 변형 결과를 비교하였으며, 최종적으로 MLP(Multi-Layer Perceptron) 예측모델을 생성하였고, HMA(Hybrid Metaheuristic Algorithm)를 이용하여 최적화 결과를 얻어냈다. 그러나 MLP는 예측 성능이 우수한 반면 블랙박스와 같이 결정 과정에 대한 설명이 부족하다. 본 연구에서는 Radiator Tank 부품에 대하여 사출 성형 해석 소프트웨어인 Autodesk Moldflow 2018을 이용하여 수치 해석 기법으로 데이터를 생성하고, Machine Learning 소프트웨어인 RapidMiner Studio version 9.5를 활용하여 여러 Machine Learning Algorithms 모델을 생성하여 평균 제곱근 오차를 비교하였다. Decision-tree는 Root Mean Square Error(RMSE) 값이 다른 Machine Learning 기법에 비해 양호한 예측 성능을 갖추고 있었다. Decision-tree의 크기를 결정하는 Maximal Depth에 따라 분류 기준을 높일 수 있지만 복잡성도 함께 증가시켰다. Decision-tree를 이용하여 구속 조건을 만족하는 중간 값을 선정하여 시뮬레이션을 진행한 결과 기존의 시뮬레이션만 진행한 것보다 7.7%의 개선 효과가 있었다.

수목 동정을 위한 수피 분류 데이터셋 구축과 합성곱 신경망 기반 53개 수종의 동정 모델 개발 (Construction of a Bark Dataset for Automatic Tree Identification and Developing a Convolutional Neural Network-based Tree Species Identification Model)

  • 김태경;백규헌;김현석
    • 한국산림과학회지
    • /
    • 제110권2호
    • /
    • pp.155-164
    • /
    • 2021
  • 자연환경에 대한 국민들의 관심 증가로 스마트폰과 같은 휴대용 기기를 이용한 수목 동정의 자동화에 대한 요구가 증가하고 있다. 최근 딥러닝 기술의 발전에 힘입어, 외국에서는 수목 인식 분야에의 적용이 활발하게 이루어지고 있다. 수목의 분류를 위해 꽃, 잎 등 다양한 형질들을 대상으로 연구가 진행되고 있지만, 접근성을 비롯한 여러 장점을 가진 수피의 경우 복잡도가 높고 자료가 부족하여 연구가 제한적이었다. 본 연구에서는 국내에서 흔히 관찰 가능한 수목 54종의 사진자료를 약 7,000 여장 수집 및 공개하였고, 이를 해외의 20 수종에 대한 BarkNet 1.0의 자료와 결합하여 학습에 충분한 수의 사진 수를 가지는 53종을 선정하고, 사진들을 7:3의 비율로 나누어 훈련과 평가에 활용하였다. 분류 모델의 경우, 딥러닝 기법의 일종인 합성곱 신경망을 활용하였는데, 가장 널리 쓰이는 VGGNet (Visual Geometry Group Network) 16층, 19층 모델 두 가지를 학습시키고 성능을 비교하였다. 또한 본 모형의 활용성 및 한계점을 확인하기 위하여 학습에 사용하지 않은 수종과 덩굴식물과 같은 방해 요소가 있는 사진들에 대한 모델의 정확도를 확인하였다. 학습 결과 VGG16과 VGG19는 각각 90.41%와 92.62%의 높은 정확도를 보였으며, 더 복잡도가 높은 모델인 VGG19가 조금 더 나은 성능을 보임을 확인하였다. 학습에 활용되지 않은 수목을 동정한 결과 80% 이상의 경우에서 같은 속 또는 같은 과에 속한 수종으로 예측하는 것으로 드러났다. 반면, 이끼, 만경식물, 옹이 등의 방해 요소가 존재할 경우 방해요소가 자치하는 비중에 따라 정확도가 떨어지는 것이 확인되어 실제 현장에서 이를 보완하기 위한 방법들을 제안하였다.

BIM 모델 내 공간의 시멘틱 무결성 검증을 위한 그래프 기반 딥러닝 모델 구축에 관한 연구 (Development of Graph based Deep Learning methods for Enhancing the Semantic Integrity of Spaces in BIM Models)

  • 이원복;김시현;유영수;구본상
    • 한국건설관리학회논문집
    • /
    • 제23권3호
    • /
    • pp.45-55
    • /
    • 2022
  • BIM의 도입에 따라 공간이 개별 객체로 인식되면서 객체화된 공간의 속성정보는 법규검토, 에너지 분석, 피난 경로 분석 등을 위한 기반 데이터로 사용 가능하기에 BIM의 활용성을 넓힐 수 있는 발판을 마련하였다. 그러나 BIM 모델 내 개별 공간 속성의 오기입이나 누락이 없는 시멘틱 무결성(semantic integrity)이 보장되어야 하는데, 다수의 참여자에 의한 수작업으로 진행되는 BIM 모델링 과정 특성 상 설계 오류가 빈번히 발생한다는 문제점이 존재한다. 이를 해결하기 위해 BIM 모델의 공간 정합성 검증을 위한 연구가 다수 진행되었으나, 적용 범위가 한정적이거나 분류 정확도가 낮은 한계점이 존재하였다. 본 연구에서는 공간의 기하정보 뿐 아니라 BIM 모델 내 공간과 부재 간 연결 관계를 Graph Convolutional Networks (GCN) 학습과정에 활용하여 향상된 성능의 공간 자동 분류모델을 구축하고자 하였다. 구축된 GCN 기반 모델의 성능을 공간의 기하정보만으로 학습된 기계학습 모델인 Multi-Layer Perceptron (MLP)과 비교하여 공간 분류 시 연결 관계 적용의 효용성을 검증하고자 하였다. 이를 통해 관계정보 활용 시 약 8% 내외 수준으로 공간 분류 성능이 향상되는 것으로 확인되었다.

고해상도 항공 영상과 딥러닝 알고리즘을 이용한 표본강도에 따른 토지이용 및 토지피복 면적 추정 (Assessing the Impact of Sampling Intensity on Land Use and Land Cover Estimation Using High-Resolution Aerial Images and Deep Learning Algorithms)

  • 이용규;심우담;이정수
    • 한국산림과학회지
    • /
    • 제112권3호
    • /
    • pp.267-279
    • /
    • 2023
  • 본 연구는 IPCC에서 제시하고 있는 Approach 3 수준의 토지이용 및 토지피복 면적 추정을 위해 고해상도 항공사진에 딥러닝 알고리즘과 Sampling method를 적용하였으며, 표본강도에 따라 토지피복 면적을 산출하고 최적의 표본강도를 도출하는 것을 목적으로 하였다. 원격탐사자료로는 51 cm급의 고해상도 칼라 항공 이미지를 사용하였으며, 딥러닝 알고리즘은 전이 학습이 적용된 VGG16 아키텍처를 활용하였다. 딥러닝 기반 토지피복 분류모델의 학습과 검증은 육안판독을 통해 선별된 데이터를 이용하였다. 최적의 표본강도를 도출하기 위한 평가는 7개의 표본강도(4 × 4 km, 2 × 4 km, 2 × 2 km, 1 × 2 km, 1 × 1 km, 500 × 500 m, 250 × 250 m)에 따른 토지이용 및 토지피복 면적을 추정하고 환경부에서 제시한 토지피복지도와 비교하였다. 본 연구 결과, 딥러닝 기반의 토지피복 분류 모델의 전체정확도와 카파계수는 각각 91.1% 와 88.8%였다. F-Score는 초지를 제외한 모든 범주가 90% 이상으로 구축되어 모델의 정확도가 우수하였다. 표본강도별 적합도 검정은 유의수준 0.1에서 4 × 4 km를 제외한 모든 표본강도에서 환경부에서 제시한 토지피복지도의 면적 비율과 유의한 차이를 보이지 않았다. 또한, 표본강도가 증가할수록 상대표준오차와 상대효율은 감소하였으며, 상대표준오차는 1 × 1 km 표본강도에서 모든 토지피복범주가 15% 이하로 감소하였다. 따라서, 지역 단위의 토지피복 면적 산정을 위해서는 표본강도를 1 × 1 km보다 상세하게 설정하는 것이 적합하다고 판단된다.

폐기종 및 간질성 폐질환: 인공지능 소프트웨어 사용 경험 (Using Artificial Intelligence Software for Diagnosing Emphysema and Interstitial Lung Disease)

  • 백상현;진공용
    • 대한영상의학회지
    • /
    • 제85권4호
    • /
    • pp.714-726
    • /
    • 2024
  • 흉부 CT상 폐기종이나 간질성 폐질환의 형태나 범위를 인공지능을 이용하여 자동적으로 객관적으로 진단하는 다양한 알고리즘을 개발되고, 이를 증명하는 연구들이 진행되어 왔다. 흉부 CT상 인공지능을 이용한 폐기종 정량화 연구들을 보면 CT상 폐기종의 상대적인 양이 증가와 폐 기능의 악화와 연관이 있으며, 특히 중심성 폐기종을 중심으로 정량화를 하는 것이 임상 증상이나 만성폐쇄성 폐질환의 사망률을 예측하는 데 도움이 된다고 보고하고 있다. 또한, 간질성 폐질환에서는 인공지능이 CT상 통상성 간질성 폐렴의 형태를 정상, 간유리 음영, 망상형 음영, 벌집 모양, 폐기종, 경화로 분류를 할 수 있고, 인공지능이 흉부영상의학과 전문의와 비슷한 정도로 통상성 간질성 폐렴을 진단(70%-80%) 할 수 있다고 보고했다. 그러나 인공지능의 결과들이 흉부 CT의 스캔 변수들, 재구성 알고리즘, 방사선 선량, 개발된 인공지능 훈련 데이터에 의해 영향을 받으며, 이러한 이유로 아직까지 흉부 CT상 폐기종과 간질성 폐질환의 진단과 정량화는 실제로 일상 업무에서 제한적으로 사용되고 있다. 이 논문에서는 폐기종과 간질성 폐질환의 진단과 정량화를 위해서 인공지능을 사용하고 있는 저자들의 경험을 증례로 소개를 하고, 이 두 질환의 인공지능의 효용성과 제한점에 대해서 언급하고자 한다.

지면.비지면점 분류를 위한 라이다 필터링 알고리즘의 종합적인 비교 (Comprehensive Comparisons among LIDAR Fitering Algorithms for the Classification of Ground and Non-ground Points)

  • 김의명;조두영
    • 한국측량학회지
    • /
    • 제30권1호
    • /
    • pp.39-48
    • /
    • 2012
  • 수치표고모델(DEM : Digital Elevation Model)을 생성하거나 지상의 객체를 추출하기 위해서 라이다 자료에서 지면점과 비지면점을 분리하는 필터링(filtering) 과정은 중요하다. 본 연구에서는 라이다 자료에서 지면점을 추출하는 데 사용되는 기존의 필터링 방법을 대상으로 정성적 분석과 정량적 분석을 통해 가장 효과적인 필터링 알고리즘을 선정하는 것을 목적으로 하였다. 이를 위해 Adaptive TIN, Perspective Center Based Filtering Algorithm, Elevation Threshold with Expand Window, Progressive Morphology의 4가지 필터링 방법을 산악지역, 도시지역, 건물과 산이 공존하는 3가지 지역에 적용하여 각각의 방법에 대한 특징을 분석하였다. 실험에 사용된 4가지 필터링 방법의 정성적인 비교는 음영기복도를 생성한 후 시각적인 방법을 적용하였고 정량적인 비교는 GPS로 관측한 검사점을 이용한 절대적인 비교와 국토지리정보원의 수치표고모델을 이용하여 상대적인 비교를 수행하였다. 라이다 필터링 실험을 통하여 Adaptive TIN 알고리즘은 산악지역과 도시지역에서 지면점을 가장 효율적으로 추출하였고 건물과 산이 공존하는 지역에서는 Progressive Morphology 알고리즘이 가장 양호한 결과를 나타내었다. 또한 정성적, 정량적 비교 결과 전반적으로 지역적 특성에 관계없이 적용가능한 필터링 알고리즘은 ATIN 알고리즘으로 나타났다.

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF